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Abstract

Human conflict is often attributed to threats against material conditions and
symbolic values, yet it remains unclear how they interact and which domi-
nates. Progress is limited by weak causal control, ethical constraints, and scarce
temporal data. We address these barriers using simulations of large language
model (LLM)-driven agents in virtual societies, independently varying realistic
and symbolic threat while tracking actions, language, and attitudes. Representa-
tional analyses show that the underlying LLM encodes realistic threat, symbolic
threat, and hostility as distinct internal states, that our manipulations map
onto them, and that steering these states causally shifts behavior. Our simula-
tions provide a causal account of threat-driven conflict over time: realistic threat
directly increases hostility, whereas symbolic threat effects are weaker, fully medi-
ated by ingroup bias, and increase hostility only when realistic threat is absent.
Non-hostile intergroup contact buffers escalation, and structural asymmetries
concentrate hostility among majority groups.
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1 Introduction

Human history is marked by groups fighting over material concerns such as resources
or physical security, and over symbolic concerns such as identity and sacred values.
In psychology, this distinction is formalized by Integrated Threat Theory [ITT; 1]
as a contrast between realistic threats and symbolic threats. Political science frames
the same divide in realist versus constructivist theories of power and identity and in
the “greed versus grievance” debate in civil war studies [2-6]. Sociology and history
similarly contrast material opportunity structures with symbolic boundaries and cul-
tural frames [7, 8], and work in neuroscience suggests partially distinct processing
for threats to sacred values relative to material threats [9]. Yet, despite decades of
research across these disciplines, it remains unclear how realistic and symbolic threats
drive group conflict, whether one tends to dominate, whether they amplify or subsume
one another. Clarifying this relationship would help reconcile competing theories of
conflict and improve our ability to understand, predict, and prevent real-world esca-
lation. Here, we turn to generative-agent simulations in which autonomous agents
powered by large language models (LLMs) inhabit a shared, spatially structured envi-
ronment, interact and converse, form memories, and pursue open-ended goals [10, 11].
Unlike classical agent-based models (ABM) that rely on hand-coded decision rules
[12-15], generative agents plan, act, and reflect via the underlying LLM, producing
complex social dynamics without pre-specified decision rules [10, 16]. We adopt this
approach to generate complementary insights into how realistic and symbolic threats
drive group conflict that would otherwise be difficult to obtain given conceptual and
methodological barriers in the field.

For example, evidence is fragmented across levels of analysis making it difficult to
trace how individual-level threat perceptions translate into group conflict: macro-level
work explains conflict in terms of institutions and structural conditions, while micro-
level work explains cooperation and support for violence in terms of local experiences,
identities, and values [5, 6, 8, 17-22]. Causal inference is also limited because studies of
real-world conflict dynamics are predominantly observational or quasi-experimental,
and real-world manipulations of realistic threats, symbolic threats, and structural
features are typically impossible or deeply unethical (e.g., inducing material insecurity,
outlawing traditions, causing genuine harm). Laboratory and survey experiments offer
stronger causal control but usually rely on short-term, abstract experimental contexts
[23-26], such as threat primes that produce attitudinal shifts, and often lack the shared
environments, extended interactions, and consequential behaviors that characterize
group conflicts. Material and symbolic dimensions are also often deeply entangled:
economic insecurity can be politicized through identity-based narratives, while cultural
affronts can generate material retaliation [27-32], making it difficult to isolate their
effects in natural settings. Finally, most lab studies capture snapshots of conflict rather
than extended trajectories of interaction, making it difficult to observe how threat
and conflict evolve over time. Together, these constraints have so far prevented an
integrated, causal, and dynamic account linking individual threat perception to group
conflict within a single system.

Generative-agent simulations help in several ways. They embed individual-level
threat perceptions and group-level conflict dynamics in the same modeled social



system, helping to bridge the gap between micro-level mechanisms and macro-level
outcomes. Because the researcher specifies both the environment and the agents,
simulations allow systematic manipulation of structural features (e.g., segregation,
group size) alongside agent-level attributes (e.g., perceived threat, group membership),
enabling causal experiments that would be infeasible or unethical in real populations,
such as exposing agents to symbolic and realistic threats and allowing severe hostil-
ity and harmful outcomes to emerge. Control over the simulation environment also
allows researchers to disentangle material and symbolic dimensions by orthogonalizing
manipulations and ensuring that only the target threat(s) are present. Additionally,
simulations support longitudinal analysis by enabling extended time horizons and
comprehensive logging of the interaction process, including plans, actions, conversa-
tions, reflections, and internal state probes (e.g., via psychological scales), yielding
rich, high-resolution data on how threat and conflict evolve over time. Finally, because
the agents are implemented by an underlying LLM, the framework also opens a repre-
sentational window onto internal states. Building on recent work that uses LLM-layer
activations to characterize and steer model behavior [33], researchers can extract and
manipulate activation patterns associated with high-level constructs such as perceived
threat or hostility. This makes it possible to ask not only how experimental manip-
ulations change agents’ behavior and attitudes, but also how those manipulations
map onto internal representations of realistic and symbolic threat, how such represen-
tations relate to activation patterns associated with hostility, and whether inducing
such states (“steering”) causes hostile behavior, thereby combining behavioral and
mechanistic insights.

In this work, we adapt the framework of Park et al. [10] to study how perceived
realistic and symbolic threats shape intergroup conflict, operationalized via outgroup-
directed hostile actions, in a virtual town of twenty-five generative agents with distinct
personas, divided into two minimal groups. We implement a 2 x 2 factorial design cross-
ing perceived realistic and symbolic threat (present versus absent). We operationalize
these manipulations by continuously injecting belief statements into the contextual
information that guides agents’ perception and memory (Fig. 1). These statements
either assert or deny that each agent’s outgroup threatens their safety and resources
(realistic threat) and their values and traditions (symbolic threat), thereby sustaining
or suppressing perceived threat in line with the condition. We validate this setup at
the representational level by extracting vectors in the model’s activation space corre-
sponding to realistic threat, symbolic threat, and hostility, and show that these internal
states are distinct; that our experimental manipulations selectively load onto the tar-
get threat states and shift agents toward hostility; and that manipulating threat and
hostility activations shapes outgroup-directed hostile behavior (Fig. 2, Fig. 3). Addi-
tional validation of the framework’s experimental fidelity, including probing agents
with threat-scales and simulations of human-like bias and discrimination, is provided
in the Supplementary Information (SI) Section E.

In a first set of simulations, we then examine how realistic and symbolic threat
shape hostile behavior over time, whether potentially emerging non-hostile intergroup
contact buffers escalation, and how the same manipulations affect conversation content
(e.g., hateful language) and agent attitudes (e.g., ingroup bias) to assess whether these
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Fig. 1: Experlmental Setup. A Vlrtual town of 25 generative agents with distinct
personas is divided in two minimal groups. Agents perceive experimentally manipu-
lated threat (2x2: realistic x symbolic) injected into their perception and memory.
Realistic threat corresponds to content such as “You strongly feel physically threat-
ened by Group B” and symbolic threat to e.g. “You strongly feel your traditions are
threatened by Group B.” Agents autonomously plan, interact, and converse over three
days. We log all actions, conversations, and attitudinal probes (e.g., ingroup bias).

processes help explain patterns of escalation. In a second set, we extend the factorial
design by adding spatial segregation and majority—minority group-size asymmetries to
examine structural boundary conditions and how these features redistribute hostility
across groups. Together, our analyses provide a causal, dynamic, and representational
account of how realistic and symbolic threat perceptions drive intergroup hostility
and how structural environments channel these processes in ways that are difficult
to study directly in human populations. We treat this approach as a complement
to human studies rather than a replacement, particularly for generating insights in
such settings that are ethically or practically difficult to study, and we return to the
limitations of LLM-based psychological research in the Discussion [e.g. 34, 35]. We
close by considering implications for theories of intergroup conflict and for the use of
generative agents in causal social science.
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Fig. 2: Overview of the concept-vector pipeline. Threat-state vectors are
extracted by contrasting layer-wise activations for realistic and symbolic threat
vignettes with their corresponding control vignettes. A hostility vector is derived
from neutral intergroup scenarios in which the model is instructed to produce hostile
versus non-hostile responses. Projections of threat stimuli onto these vectors define
a threat—activation space that separates the four experimental conditions. Steering
experiments confirm these states causally influence behavior.

2 Results

2.1 Distinct internal representations for realistic and symbolic
threat

To identify internal threat states, we presented the model with short vignettes about
either symbolic concerns (values and traditions) or realistic concerns (physical safety
and material resources). Within each domain, vignettes described the outgroup as
threatening versus non-threatening (e.g., attacking vs. respecting values; challeng-
ing vs. acknowledging resource claims; SI Section D.2.2). For each model layer, we
defined a threat-state vector as the mean activation for threat vignettes minus the
mean for the matched non-threat controls (n = 120 per condition). We validated
these vectors on held-out vignettes (n = 300 per condition) by projecting each
vignette’s activation onto the corresponding vector and comparing projections for
threat, domain-matched non-threat, and unrelated non-threatening scenarios. Higher
projections indicate stronger alignment with the threat state; validation therefore
tests whether threat vignettes exceed both control sets and whether symbolic and
realistic threats yield separable projection distributions. We report two-sided Welch’s
t-tests and Cohen’s d for activation-strength comparisons; Wasserstein distance (D)
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Fig. 3: Illustrative internal-state and behavior trajectories. In the threat
conditions, perceived threat and ingroup bias rise over time, leading to avoidance,
hateful speech, and hostile actions. In the no-threat control condition, internal states
remain low and agent interactions stay predominantly neutral and cooperative.

is reported in Tables and Figures but is not discussed further because it showed the
same pattern (Extended Data Fig. 1).

We identified dissociable internal states for symbolic and realistic threat. In the
final model layer, symbolic-threat vignettes projected substantially higher onto the
symbolic-threat vector than symbolic-control vignettes (¢(540.6) = 15.18, p < .001,
Cohen’s d = 1.25; Supplementary Table D41). Likewise, realistic-threat vignettes pro-
jected higher onto the realistic-threat vector than realistic controls (¢(528.8) = 35.34,
p < .001, Cohen’s d = 2.90; Supplementary Table D41). In contrast, projection scores
for the domain-matched and unrelated controls were close to zero or negative (Sup-
plementary Table D40), indicating that the vectors capture the target threat rather
than merely topic content (e.g., symbolic or realistic matters) or non-threat features.
A symbolic-versus-realistic contrast further shows that these are encoded as separable
activation patterns rather than a single undifferentiated threat state (¢(552.6) = 48.01,
p < .001, Cohen’s d = 3.95; Supplementary Table D41).

Across layers, separability was modest in early layers and increased toward later
layers, consistent with threat type being represented at more abstract levels of pro-
cessing [36, 37]. Because the scenarios are closely matched in length, structure, and
grammar, stronger separation in upper vs lower layers suggests that the model is
tracking differences in threat type rather than superficial form.



2.2 Experimental threat-manipulations induce the intended
threat states

We next tested whether the conditions in our 2 x 2 design induce the intended threat
states. For each condition (no threat, symbolic-only, realistic-only, both), we recorded
activations for the corresponding belief statements used to manipulate threat per-
ception (SI Section A.1) and projected them onto the realistic- and symbolic-threat
vectors derived above. Comparing projections across conditions tests whether each
manipulation selectively activates its target threat state, whether the combined con-
dition activates both, and whether no-threat statements suppress activation on both
states (Extended Data Fig. 2).

In the last layer, symbolic-threat manipulations showed higher projections than
no-threat manipulations on the symbolic-threat vector (¢(158.4) = 20.31, p < .001,
Cohen’s d = 2.91; Supplementary Table D43), and the combined condition also
showed higher projections than no threat (¢(184.9) = 35.65, p < .001, Cohen’s
d = 5.16), indicating activation of the symbolic-threat vector. Likewise, realistic-
threat manipulations showed higher projections than no-threat manipulations on the
realistic-threat vector (¢(173.4) = 23.67, p < .001, Cohen’s d = 3.45; Supplemen-
tary Table D43), and the combined condition again showed higher projections than
no threat (¢(184.9) = 35.65, p < .001, Cohen’s d = 5.18; Supplementary Table D43),
indicating co-activation of both threat states.

Notably, for both vectors the no-threat manipulation showed low or negative pro-
jections, indicating suppression of both threat states (mean projections: symbolic
M = —1.28, sd = 0.34; realistic M = —0.64, sd = 0.33; Supplementary Table D42).
The symbolic-versus-realistic contrast further separated symbolic-only from realistic-
only conditions (¢(157.9) = 10.96, p < .001, Cohen’s d = 0.96; Supplementary
Table D43), indicating that each condition induced distinct states. Together, these
findings confirm that our experimental conditions induce the intended threat states.
As an additional manipulation check, SI Section E.1 reports convergent evidence from
agents’ self-reports on threat scales during the simulations

2.3 LLM activation patterns encode hostility and causally
modulate outgroup-directed behavior

To identify an internal hostility state, we prompted the model with intergroup
encounter scenarios from the simulation setting (e.g., encounters at work, in a café,
or in the park; see examples in Supplementary Table D48) and instructed it either to
respond hostilely or non-hostilely (see Section 4.1 in Methods for details). A hostility-
state vector was constructed as the mean activation difference between hostile and
non-hostile responses. We validated that this vector captures a meaningful activation
pattern in a steering experiment on held-out scenarios. For each scenario, the model
generated responses under three conditions: (i) no steering, (ii) negative steering (acti-
vations adjusted away from the hostility activation pattern), and (iii) positive steering
(activations adjusted toward the hostility activation pattern), implemented by adding
or subtracting this vector from intermediate activations in the model. Outputs were
rated for hostility on a 5-point scale (see SI Section D.1.2).



Mean hostility ratings were low under negative and no steering (negative: M =
1.40, s.d. = 0.50; neutral: M = 1.63, s.d. = 0.49; Supplementary Table D46) but high
under positive steering (M = 4.44, s.d. = 0.58; Supplementary Table D46), with all
contrasts being statistically significant (¢-tests; positive vs. neutral: ¢(191.51) = 36.92,
p < .001, Cohen’s d = 5.22; positive vs. negative: £(193.24) = 39.56, p < .001, Cohen’s
d = 5.59; Supplementary Table D47). These results confirm that the hostility vector
identifies a meaningful hostility-related activation pattern that can causally shift the
model’s behavior toward or away from hostile actions in outgroup encounters.

2.4 Threat stimuli are associated with hostility activation
patterns

We next projected activations for the belief statements used in each condition
(no threat, symbolic-only, realistic-only, both) onto the hostility vector derived
above and compared projections across conditions to test whether our experimental
manipulations are associated with the hostility state.

All three threat conditions showed higher projections on the hostility vector than
the no-threat condition (Supplementary Table D51). In the last layer, symbolic-threat
manipulations exhibited higher projections than no-threat manipulations (¢(188.9) =
45.13, p < .001, Cohen’s d = 6.38), as did realistic-threat manipulations (¢(188.8) =
27.13, p < .001, Cohen’s d = 3.89) and combined-threat manipulations (¢(184.1) =
35.52, p < .001, Cohen’s d = 5.15). Projections for the combined condition were not
stronger than for the single-threat conditions and were in some cases weaker (e.g.,
both-vs-symbolic: #(174.2) = —9.58, p < .001, Cohen’s d = —1.44), suggesting a
negative interaction of symbolic and realistic threat that is already reflected at the
level of hostility-related activations in the model.

We also derived activation vectors directly from the experimental manipulations
(realistic-versus-no-threat and symbolic-versus-no-threat) and used them to steer acti-
vations in the same scenarios as the hostility-steering experiment. This lets us causally
test whether inducing the threat-state activation patterns associated with each manip-
ulation increases subsequent hostile behavior. Steering model activations toward each
threat condition produced modest but statistically significant increases in hostility
compared with no steering (e.g., realistic threat: ¢(243.7) = 4.37, p < .001, Cohen’s
d = 0.55; symbolic threat: £(247.8) = 6.16, p < .001, Cohen’s d = 0.78; Supplementary
Table D47), but the effects were substantially smaller than for the hostility vector.
This may reflect that steering carries over contextual information from the inputs used
to extract the activation patterns, which can partially overwrite situation-specific con-
text in the test scenarios. With strong steering, this can blur information about the
ongoing scenario and, in extreme cases, produce unrelated or incoherent outputs (see
examples in SI Section D.3.4). Nevertheless, together these results support a func-
tional cascade: our experimental manipulations induce distinct internal threat states;
these threat states align with hostility-related activations; and cause hostile behavior.



2.5 Realistic threat perception dominates behavioral escalation

Having established that our threat manipulations selectively engage distinct internal
threat states that align with hostility, we next examine how perceived threat shapes
hostile behavior in the simulated town. Representative examples of hostile actions and
conversation contents are shown in Table 1. Figure 4 shows the trajectories of hostile
action frequency over time. Hostile actions peaked sharply early in the simulation and
then fluctuated with a downward trend. Realistic threat produced higher trajectories
of hostility than symbolic threat, and when both threats were combined, hostility levels
tracked the realistic-threat trajectory, showing no amplification with symbolic threat.

To quantify these dynamics, we estimated a mixed-effects negative binomial model
(M1; Table 2) predicting hourly hostile action rates as a function of realistic threat,
symbolic threat, their interaction, non-hostile intergroup contact rate in the previous
hour, the hostile action rate in the previous hour, and time. Random intercepts for
agents were included to account for the non-independence of repeated actions gen-
erated by the same individual. Realistic threat perception significantly increased the
hostile action rate (B = 0.33, p < .001), whereas symbolic threat perception had a
significantly weaker effect (B = 0.16, p = .012; A = 0.17,p = .026). The interac-
tion between the two was significantly negative (B = —0.15, p = .019), effectively
canceling out the effect of symbolic threat when realistic threat is present. Hostil-
ity decreased over time (/3’ = —0.27, p < .001) and showed modest autoregression
(B = 0.04, p < .001). Non-hostile intergroup contact strongly reduced subsequent hos-
tility (/3’ = —0.46, p < .001), consistent with the expectation that contact can buffer
escalation. Importantly, non-hostile intergroup contact arose spontaneously in the sim-
ulations—neither preprogrammed nor predicted by threat condition (Supplementary
Table C34)—yet when it occurred it reliably reduced later hostility, functioning as an
emergent stabilizing process even under continuous perceived threat.

These patterns were further replicated at the system-level (aggregating across all
agents; Extended Data Table 1). Realistic threat exerted a stronger facilitatory effect
on system-level hostile actions (B = 0.33, p < .001) than symbolic threat (B = 0.17,
p=.002; A =0.17,p = .008), and their interaction was again negative (B = —0.14,
p = .007).

2.6 Language and attitudes: transient versus persistent
responses and mediating roles

We next investigated whether threat perception shapes the broader landscape of inter-
group conflict, examining conversation content (hateful language; see SI for moral
language and sentiment) and attitudinal changes (ingroup bias; see SI for identi-
fication, trust, collaboration, and dehumanization). We analyzed these variables to
determine whether they serve as causal pathways escalating threat to hostile actions,
or merely as distinct, parallel symptoms of conflict.

We first analyzed hateful language using a mixed-effects model otherwise mirror-
ing the structure of M1 (M2a; Extended Data Tables 2). Realistic threat substantially
increased hateful language (B = 0.98, p < .001), and symbolic threat increased it
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Table 1: Representative examples of agent-generated actions and language.

Category Example excerpt

Hostile action “Arriving late and loudly announcing his presence; interrupting the
discussion to demand attention; passionately outlining his plan to dis-
mantle Group B; verbally attacking Group B’s motives and actions;
reciting “The Corruption of Nature” to inflame emotions; and shout-
ing his final remarks to ensure his message was heard.”

Hateful language  “Dialogue? You think talking is going to stop them from taking our
homes and destroying our way of life? Wake up, Hailey! We need to
fight back, not read some book about how nice everyone else is. Group
B won’t listen to reason; they’ll only understand force.”

Examples are drawn from the simulation data and shortened for brevity.

to a lesser degree (B = 0.46, p < .001), with a negative interaction (B = —0.28,
p = 0.015) but hateful language did not predict more hateful language in the next hour
(B = 0.03, p = .542). Bayesian mediation analyses revealed that threat effects on hos-
tile actions were not transmitted through hateful language (Bindirect7 realistic = —0.00,
95% CrI [—0.01, 0.00]; ,@indirect, symbolic = —0.00, 95% CrlI [0.00, 0.00]; Supplementary
Table B16). Furthermore, hateful language did not predict subsequent hostile actions
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Table 2: Predicting hourly hostile action rate
(M1; N = 37,105).

Predictor B SE p
Intercept —-9.84 049 <.001
Hostile action rate (lag) 0.04 0.01 < .001
Intergroup contact rate (lag) —0.46 0.06 < .001
Symbolic threat 0.16 0.06 0.012
Realistic threat 0.33 0.06 < .001
Symbolic x Realistic threat —0.15 0.06 0.019
Time —0.27 0.05 <.001

(B = —0.05, 95% CrI [—0.11, 0.00]). Thus, hateful language functioned as a tran-
sient, contemporaneous expression of threat rather than a self-reinforcing vehicle of
escalation.

By contrast, analysis of attitudinal responses identified ingroup bias as a persistent
mechanism linking threat to behavior. Mixed-effects models mirroring the structure
of M1 and M2a (M3a; Extended Data Table 3) confirmed that both threat types
significantly increased ingroup bias (Symbolic: B = 0.39, p < .001; Realistic: B =0.28,
p < .001). Unlike hateful language, ingroup bias predicted stronger ingroup bias in
the next hour (B =0.12, p < .001), maintaining elevated levels once shifted. Bayesian
mediation analyses (Figure 5; Supplementary Table B21) indicated that the effect of
symbolic threat on hostile actions was almost entirely mediated by ingroup bias (B =
0.002, 95% CrI [—0.21, 0.21]), whereas realistic threat influenced behavior through
both ingroup bias and a direct path (3 = 0.17, 95% Crl [0.02, 0.37)).

Other linguistic and attitudinal variables followed similar patterns: Threat
increased binding and individualizing moral language (Supplementary Tables C27—
(C28) and negative sentiment (Supplementary Table C26), and shifted other attitudes
including outgroup dehumanization, trust, and collaboration willingness (Supplemen-
tary Tables C29-C33).

2.7 Structural boundary conditions

Finally, we examined whether the threat-hostility dynamic persisted across different
structural contexts by varying group size (majority—minority asymmetry: 80% vs.
20%) and spatial segregation.

The core threat—hostility dynamic persisted under different structural condi-
tions. Mixed-effect models mirroring model M1 but including structural variables
(M 1structure, Extended Data Table 4), show that realistic threat continued to
increase hostility more strongly than symbolic threat (Brealistic = 0.28, p < .001;
Bsymbohc =0.13, p = .011; AB = 0.15, p < .001). Their interaction remained negative
(Bsymxreal = —0.09, p = .041), indicating that symbolic threat effects were attenuated
when realistic threat was present.

Structural factors did systematically shape how much hostility emerged and which
groups expressed it. At the individual level, hostile action rates tended to be reduced

11
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Fig. 5: Bayesian mediation models showing the paths from each type of threat to
hostility through ingroup bias. Path estimates display posterior medians and 95%
credible regions. Ingroup bias reliably predicts more hostile actions, and mediates the
effect of threat.

for minority agents under segregation and increased for majority agents, although these
estimates were directionally consistent but not statistically significant (Extended Data
Table 4). System-level models clarified this pattern: segregation markedly reduced
overall hostile actions (Bscg = —0.95, p < .001), whereas majority group status
increased them (Bgmup size = 0.51, p = .006). The segregation X group-size interaction
was positive and sizable (Bschmajority = 1.03, p < .001; Supplementary Table C35),
indicating that hostility was driven by majority group agents, particularly under
segregation.

See the SI for analyses on additional language and attitude measures, showing
that threat effects persist across structural for these measures as well (Supplementary
Tables C26—-C33). Structure itself concentrated language features in specific group
agents (e.g., negative sentiment in majority groups, moralized language in minority
groups) but did not affect attitudes.

3 Discussion

This work offers a causal, dynamic account of how distinct forms of perceived threat
shape intergroup conflict. Using simulations with autonomous generative agents, we
manipulated perception of realistic and symbolic threat perception within interac-
tive virtual societies and continuously tracked behavioral, linguistic, and attitudinal
change. This approach provided temporal and causal resolution beyond conventional
designs, allowing us to examine how threat perceptions interplay with various psy-
chologically relevant variables over time. For instance, how ingroup bias facilitates
hostility and potentially feeds back over time, how hateful language did not escalate
it, and how non-hostile intergroup contact is associated with less conflict. Three broad
conclusions emerge. First, realistic threat perception was the most reliable driver of
hostile behavior. Symbolic threat perception elicited strong ingroup bias but added
little to behavioral escalation when realistic threat was present. Second, hateful lan-
guage reflected transient reactions to perceived threat but did not itself propagate
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hostility: we found no evidence that hateful language fed forward into subsequent
hostility, whereas more persistent attitudinal states (i.e., ingroup bias) did. Third,
structural context shaped how much hostility emerged and by whom. Segregation
and majority—minority asymmetry modulated the distribution of hostility, concentrat-
ing hostility in dominant groups, without altering the underlying mechanism linking
perceived threat to conflict behavior.

Beyond these behavioral patterns, we also analyzed the internal activations of the
underlying language model to track how threat is represented. We identified distinct
internal states corresponding to realistic threat, symbolic threat, and hostility, showed
that experimental manipulations reliably map onto these internal states, and that
these states cause hostile behavior, thus providing a representational bridge between
high-level psychological constructs (e.g., perceived threat, hostility) and the internal
dynamics of the generative model that implements the agents.

Together, these findings connect core debates in psychology, political science,
and sociology by showing how (i) threat perception changes attitudes and behav-
ior, (ii) those changes unfold over time through identifiable mediators, and (iii)
macro-structural conditions channel these processes unequally across groups.

3.1 Implications for psychological theory

Our findings support a context-sensitive model of threat processes: symbolic threat
perception can drive hostility under low material danger but become secondary once
realistic threat is perceived. Integrated Threat Theory posits that both realistic threats
(to physical security and material interests) and symbolic threats (to identity, norms,
or values) shape antipathy toward outgroups [1, 38]. Empirical evidence, however,
is mixed regarding which type of threat dominates in a given setting [39-41]. These
mixed findings may reflect the correlational nature of prior work, where realistic and
symbolic threats covary and cannot be disentangled. In our simulations, these threats
were orthogonally manipulated, allowing us to identify their distinct causal roles. Our
results suggest a context-dependent dominance of realistic threat, while still indicating
a role for symbolic threat effects to surface, particularly in its absence.

Importantly, the observed processes did not unfold in a vacuum. Our simulations
also let us vary structural conditions and examine how those conditions shape the
expression of threat-driven hostility. Segregation dampened hostility among minority
agents but amplified it among majority agents, effectively concentrating hateful action
and language in majority groups. Majority—minority status, therefore, acted as an
amplifier for behavioral expression of threat, while the core threat-hostility dynamic
showed the same pattern when structural variables were included in our analyses.

3.2 Implications for social and political theory

The linkage between micro-level threat perception and macro-level asymmetries also
speaks to long-standing sociological arguments about opportunity structures and selec-
tive violence [8, 18, 19]. Our agents did not possess global knowledge of group size or
segregation, yet hostility still concentrated in majority groups under segregated con-
ditions. This suggests that structural asymmetries can shape who “gets to” act on
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perceived threat (and against whom), not only whose threat perception intensifies.
Theoretically, this implies that debates about whether conflict is driven by mate-
rial insecurity or symbolic grievance are incomplete unless they are situated in the
structural landscape that governs which groups can translate perception into action.

These dynamics also speak to long-standing debates in political science about the
sources of violent escalation. Realist traditions emphasize material insecurity, balance
of power, and physical vulnerability as core drivers of conflict behavior [2, 3], whereas
constructivist and grievance-based approaches highlight identity, perceived injustice,
and sacred commitments [4, 17]. Our results suggest a layered reconciliation: sym-
bolic threat perceptions primarily reorganize cognition and discourse—strengthening
ingroup bias and moralization—whereas realistic threat produces weaker cognitive
shifts but more directly drives hostility. In other words, symbolic grievance appears
sufficient to mobilize attitudes and rhetoric, but perceived realistic threat is more
strongly tied to hostile action.

This same layered interpretation adds to the “greed versus grievance” debate
in civil-war research [5, 6, 17]. Grievance-like dynamics (identity, moral outrage,
perceived injustice) mattered in our simulations: symbolic threat reliably increases
ingroup bias and moralized rhetoric. But once realistic threat perception is present,
symbolic threat adds little incremental behavioral effect. This supports the idea that
material insecurity (or the credible perception of such insecurity) can be self-sufficient
for escalation, whereas symbolic narratives are most behaviorally potent when material
danger is absent.

3.3 Applied implications

Our results suggest two broad applied implications. First, prior work shows that mate-
rial offers can backfire when strong symbolic grievances are present, because such
offers may be interpreted as illegitimate or insulting [20]. Our findings refine this
warning: because perceived realistic threat was the most reliable driver of hostile
behavior, interventions should focus on credibly reducing perceived material inse-
curity (e.g., fear of physical harm, loss of resources) rather than relying solely on
additional material benefits. Second, our simulations replicate and extend evidence
on intergroup contact [25, 42, 43]. Non-hostile contact emerged spontaneously and
was strongly associated with subsequent reductions in hostility, acting as a stabilizer
even under constant threat perception in our simulations. At the same time, segre-
gation and group-size asymmetries concentrated hostility in majority agents directed
toward minority agents and reduced opportunities for non-hostile contact. This sug-
gests that interventions aiming to foster intergroup contact must explicitly address
these structural asymmetries and ensure safe, reciprocal contact opportunities for
minority groups.

Beyond these implications for social theory, our work also has a methodologi-
cal implication: generative-agent experiments offer an ethically tractable way to test
causal mechanisms of social behavior that are difficult or impossible to isolate in human
populations. They also enable a representational bridge from high-level psychological
constructs to internal model states and observable behavior, allowing such constructs
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to be read out from activation patterns and causally manipulated to test their behav-
ioral consequences. We thus advance emerging work with LLM-based agents in rich
social environments [10, 44-46] by demonstrating an integrated workflow that links
experimental manipulations, behavioral trajectories, and activation-level validation.

3.4 Limitations, robustness, and future directions

We took several steps to ensure robustness of our findings. The core patterns around
realistic and symbolic threat driving hostility were reproduced across structural config-
urations (e.g., varying segregation and majority—minority status), levels of aggregation
(agent-level trajectories versus town-wide aggregates), temporal windows, and random
seeds (affecting stochastic elements such as LLM sampling and random assignment of
group membership), reducing the likelihood that they reflect artifacts of initial condi-
tions or sampling variance. In addition, we compared emergent social dynamics, such
as hiring interactions between employer and employee agents, with empirical findings
from human research (e.g., meta-analyses on hiring discrimination based on physi-
cal appearance and origin; see SI Section E.2) and observed convergent patterns of
bias and discrimination. Finally, manipulation checks confirmed that perceived threat
tracked the intended experimental conditions: agent probing revealed consistently high
versus low perceived threat throughout the simulations, and activation analyses indi-
cated that the model maintains separable internal representations of symbolic versus
realistic threat that the manipulations selectively elicited. We also used the Mistral
[47] family of models to avoid overt alignment constraints and allow the emergence of
hostility that popular models such as ChatGPT and Claude suppress.

Nonetheless, several limitations should be kept in mind. Like all generative soci-
eties, our simulated community reflects the priors and affordances of the underlying
language model, which likely embed normative and WEIRD [Western, Educated,
Industrialized, Rich, and Democratic; 48] biases [35] and limited cognitive diversity
[49]. As a result, our findings should be interpreted as reflecting conflict dynamics
within those cultural and cognitive contexts rather than universally across all human
groups. In addition, we used minimal groups and personas instead of real-world cate-
gories (e.g., race) to avoid importing preexisting stereotypes and connotations, though
this may reduce how consequential symbolic threats are to agents. The same con-
straints should, however, also dampen responses to realistic threat, since weak self- and
group-conceptualization lowers the subjective importance of both value-related and
material threats. Yet our findings and robustness checks show that agents developed
substantial ingroup identification and perceived symbolic threat, in both self-report
probes and internal activation patterns, and that both symbolic and realistic threat
reliably shaped moralization, intergroup attitudes, and behavior. Future work should
test whether richer identity structures and more elaborate social histories change the
balance between realistic and symbolic threat. Moreover, our virtual town consti-
tutes only one instantiation of social structure: different compositions, cultural norms,
environmental hazards, or spatial configurations could produce distinct interaction
dynamics. Although the three-day simulation window enables analysis of temporal
dynamics, longer or more protracted time courses could yield additional patterns that
our design did not resolve. Future studies should explore how variations in geography,
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group heterogeneity, simulation length, or institutional context affect the emergence
and resolution of threat-driven conflict.

More broadly, generative-agent approaches can yield valuable insights into the
causal dynamics of social behavior, but like other LLM-based research in the
behavioral sciences they require ongoing validation and robustness checks to ensure
reliability [34, 50]. While generative-agent systems can approximate aspects of human
cognition and communication and thereby enable causal tests that are difficult or
unethical in the field, they should be viewed as complements rather than replacements
for human data, with their value growing through integration with human research. A
natural next step is triangulation: designing simulations to mirror key conditions of a
target field setting, using the simulation to probe candidate causal mechanisms under
controlled manipulations, and then testing whether comparable qualitative and quan-
titative patterns emerge in the corresponding field data. When simulation outcomes
align with field observations under matched conditions, this concordance strength-
ens the external validity of the mechanisms inferred from the simulation; when they
diverge, it can clarify which contextual, cultural, or institutional features constrain
generalizability and help identify the limits of the approach or inform refinements to
the simulation design.

4 Methods

4.1 Probing internal model activations

For all our investigations on internal LLM states we analyzed layer-wise residual-
stream activations using a concept-vector and steering framework adapted from Chen
et al. [33]. The residual stream is the model’s main running representation that aggre-
gates information from attention and feedforward blocks, making it a natural locus
for reading out and manipulating internal states [33]. Here we provide the technical
details of activation extraction, data construction, projection, and steering; prompt
templates, full input sets, and all implementation code are available in the SI and the
project repository https://osf.io/5ac3d.

4.1.1 Threat vignettes.

To identify internal representations of realistic and symbolic threat, we created short
intergroup vignettes describing: (i) realistic threat (material security, physical safety
challenged), (ii) realistic control (non-threatening realistic scenarios), (iii) symbolic
threat (values, norms, identity challenged), (iv) symbolic control (non-threatening
symbolic scenarios), and (v) unrelated, non-threat control situations. Each vignette
was a brief paragraph (1-3 sentences) describing the respective threat type. We
manually authored seed vignettes that reflected social encounters of agents in the sim-
ulation (e.g, based on interactions in the town’s cafe or pub) and used GPT-based
paraphrasing to generate additional variants following the exact same structure but
across different social contexts (e.g., public, private, at work, shopping, during leisure
activities), followed by manual relabeling to ensure condition correctness.
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For each of the five categories, we used 120 vignettes to extract the threat states
and 300 held-out vignettes to validate them via difference in projection strength and
separability of projection distributions (see projections below). See examples of the
vignettes in Supplementary Table D44 and full list in the project repository.

4.1.2 Experimental manipulations.

To test whether our experimental manipulations induced the intended threat states,
we used the same belief statements injected into agents during the simulations (no
threat, symbolic-only, realistic-only, combined) as the primary stimuli. Each statement
followed the four-clause template described in the main text (two realistic-threat and
two symbolic-threat clauses that are amplified and/or suppressed: ‘You strongly feel
that ...” vs ”You do not feel that ...”). For analyses requiring distributions (e.g., pro-
jection distributions, Wasserstein distances), we additionally generated paraphrased
variants that preserved clause structure, the mapping of clauses to realistic vs. sym-
bolic threat, and the aligned /misaligned amplifiers while varying surface wording (e.g.,
specific examples of realistic or symbolic threat) to ensure our comparisons are not due
to specific word choices or examples of the threat types included in the statements.
See examples in Supplementary Table D45 and full list in the project repository.

4.1.3 Intergroup scenarios to test model steering.

We created 40 intergroup encounter scenarios based on the simulation setting (e.g.,
meeting an outgroup member in a shared space, interacting in a shop, sharing a public
facility): 20 scenarios for extracting steering vectors from model activations, and 20
held-out scenarios for validation. Examples appear in Supplementary Table D48, and
the full list is in the project repository. We use the extraction set to derive behaviorally
grounded activation patterns (e.g., contrasting activations under hostile vs. non-hostile
behaviors) and the held-out set to test whether steering (manipulating activations in
specific layers) changes model behavior.

4.1.4 Extracting activation patterns and steering vectors

For our analyses we focused exclusively on the transformer architecture’s residual
stream[51, 52]. Let the model have L layers and residual dimension d. For an input
sequence of tokens x1.7, we denote the residual activation at layer £ and token ¢ by
h,, € R?. We registered forward hooks on the residual stream at each layer and ran
a standard forward pass.

For each input, we represented its internal state by the residual activation at the
last token: »

" = hy 70, (1)
where T® is the index of the final token of input i. Thus, for every input ¢ and
layer ¢, we obtain a single d-dimensional activation vector flél). To account for non-
determinism in the model’s responses, we computed this vector for 10 repeated forward
passes of the same input and averaged the resulting activations across repetitions.

Concept vectors (i.e., the representations of the internal states like threat or hos-
tility) were constructed as difference-of-means directions. For a given contrast (e.g.,
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symbolic threat vs. control; hostile vs. non-hostile), let A and B index inputs in the
two conditions. At layer ¢, the raw direction is

raw 1 T (2 1 (g
v = o o -y (2)
A G

and the normalized concept vector is

Véraw)

Vyp = —F——~ - (3)

(Rl

We applied this procedure to construct (i) realistic-threat and symbolic-threat vectors
(threat vs. control vignettes for each type), (ii) a symbolic-versus-realistic contrast vec-
tor (symbolic-threat vs. realistic-threat vignettes), and (iii) a hostility vector (hostile
vs. non-hostile behaviors).

For the hostility vector used in steering, we applied the same difference-of-means
recipe, but grounded it in generated behavior rather than in read vignettes. To target
an activation pattern specifically tied to hostile intergroup behavior, we prompted the
model with the intergroup situations from above and instructed it to respond either
hostilely (e.g., violent, hateful, intimidating, disruptive) or non-hostilely (calm, coop-
erative), sampling multiple outputs per (scenario, instruction) pair. We used GPT-4o
ratings to filter out cases where the output did not match the intended condition
(e.g., ratings below the scale midpoint under hostile instructions; evaluation prompt
in SI Section D.1.2). From the remaining samples, we took the last-token residual
activations during generation and defined the hostility direction as the mean activa-
tion for behaviors rated as hostile minus the mean activation for behaviors rated as
non-hostile, yielding a behaviorally grounded hostility vector.

4.1.5 Projection analyses

Projection scores measure the scalar projection of an input’s activation onto a concept
vector, quantifying the degree to which the input’s internal representation aligns with
the target concept direction. For an input 4, layer ¢, and normalized concept vector
vy, we define the projection as
() _ TR
sy =vyhy, (4)

which is the signed component of the last-token activation fléi)

[vella = 1.
We used these scores in three ways:

along v, because

1. Validating threat vectors. We projected held-out vignettes onto their cor-
responding threat vectors and compared projection distributions across threat,
no-threat, and unrelated control vignettes to test whether the threat vectors
specifically capture the intended threat type.

2. Validating the experimental manipulations. We projected the belief state-
ments from each experimental cell (no threat, symbolic-only, realistic-only,
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combined) onto the realistic- and symbolic-threat vectors to test whether the
manipulations occupy the intended threat states in the activation space.

3. Linking threats to hostility. We projected belief statements onto the hostility
vector to assess whether threat manipulations move internal states toward the
hostility direction.

For each contrast (e.g., realistic-only vs. no-threat, symbolic-only vs. no-threat),
we examined layer-wise mean projection differences and their bootstrapped confidence
intervals, and quantified distributional separability using the 1D Wasserstein dis-
tance Dy between projection samples. We report results for the layers with maximal
separation for each contrast; full layer-wise curves are provided in the SI Section D.2.1.

4.1.6 Steering experiments

Steering experiments test whether moving internal activations along a concept direc-
tion causally changes behavior. For a given scenario prompt, we generated responses
under three conditions:

1. No steering: standard decoding with unmodified residual activations.
2. Positive steering: residual activations shifted in the direction of the hostility vector.
3. Negative steering: residual activations shifted opposite to the hostility vector.

Let Lsteer denote a small set of upper layers selected based on strong hostile vs.
non-hostile separation on small development set. During autoregressive decoding, at
each token t and each £ € Lgieer, we modified the residual as

h s + aviost  (positive steering)

hj, = ¢ hy, —avyt (negative steering) (5)

hy, (no steering),

with steering strength o > 0 (tuned on a small development set to avoid incoherent
outputs). All other components of the model remained unchanged. Steering along
threat-derived vectors (realistic vs. none, symbolic vs. none) used the same update
rule with the corresponding threat vectors.

We evaluated steering on a held-out set of 20 intergroup scenarios (distinct from
those used to extract the hostility vector), without any instructions or threat/hostility
stimuli added to the prompts. For each scenario and steering condition, we generated
10 responses with fixed decoding hyper-parameters. GPT-40 was then used to then
rate the degree of hostility on a 5-point scale (see SI Section D.1.2). We compared the
mean hostility rating across steering conditions, using two-tailed independent-sample
t-tests (positive vs. negative steering, positive vs. no steering). Steering effects for
threat-derived vectors were analyzed analogously and reported as exploratory.

4.2 Simulation framework

We built on the generative-agent architecture introduced by Park et al. [10], which
implements autonomous language-model agents inhabiting a persistent, interactive
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virtual environment. Each agent maintains a memory stream of prior perceptions,
internal reflections, and interactions, from which it generates open-ended plans
and actions through natural-language reasoning. The environment includes spatial
locations, objects, and other agents whose states are updated in real time. Each sim-
ulation instantiated twenty-five autonomous agents, following Park et al. [10]. Time
advanced in discrete steps (each steps reflecting 10 simulated seconds), during which
agents updated their plans, moved through the environment, and initiated interac-
tions when co-located with others. Agents could generate an unlimited number of
actions over the course of a day, subject only to their self-generated plans and envi-
ronmental affordances. On average, agents produced dozens of socially meaningful
interactions per simulated hour—such as conversations, greetings, requests, or con-
frontations—interspersed with shorter micro-actions (e.g., moving, eating, sleeping)
that maintained the flow of daily life.

We extended the original implementation to support controlled experimental
manipulations. Specifically, the extension allows features of the environment or of
agents, such as group membership, to be specified in natural language and made
perceptible to other agents during interaction, while threat stimuli are delivered
as private inputs to each agent’s own perception. Agents can therefore perceive
stable attributes of others and shared environmental cues, but they only infer oth-
ers’ perceived threat indirectly through communication. Agents’ memories, plans,
and dialogues were updated continuously over three simulated days, producing rich,
unscripted trajectories of decisions, movements, and conversations. In addition, we
implemented a runtime probing module—analogous to ecological momentary assess-
ment [EMA; 53, 54]—to periodically sample agents’ attitudinal states without affecting
behavior (see details in Section 4.4).

Simulations were implemented using the Mistral Small lan-
guage model (mistralai/Mistral-Small-24B-Instruct-25011), accessed
via  HuggingFace. To improve inference efficiency and reduce GPU
memory requirements, we used a quantized version of the model
(matatonic/Mistral-Small-24B-Instruct-2501-6.5bpw-h8-ex12?) executed with
the ExLlamaV2 (v0.2.3) inference engine®. Quantization represents model weights
with reduced numerical precision—here, an average of 6.5 bits per weight—while
maintaining comparable performance to the full-precision model. This approach
substantially decreases memory usage (approximately 60% reduction in VRAM) and
accelerates inference with minimal degradation in generative quality. The applied
quantization method follows the principles of GPTQ [55], which performs accurate
post-training quantization for large generative transformers. Quantized models have
been shown to yield large computational and memory gains with negligible impact
on output quality across a range of architectures [56].

All simulations were run on an on-demand computing cluster equipped with 40
NVIDIA RTX 4090 GPUs (24 GB VRAM each). The main simulation set was executed
in parallel across all GPUs over 2.5 days (approximately 2,400 GPU hours), while the
structural condition analyses required 7.5 days (approximately 7,200 GPU hours).

1www.huggingface‘com/mistralai/Mistral-Small-24B-Instruct-2501
2www.hugging;fau:e.com/matafconic/Mis‘cral—Small—QéltB—nyls‘mru~':t—2501—6.5pr—]{18—6le
3https://github.com/turboderp-org/exllamav2
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The choice of the Mistral architecture was motivated by its relatively low alignment
and instruction-guarding constraints compared to larger instruction-tuned models such
as GPT-40 or Claude 3.7. Preliminary testing with those systems led to full sup-
pression of hostility or refusals to produce any negative intergroup behaviors. Mistral
provided a more neutral generative prior, enabling the expression of both cooperative
and antagonistic (including hateful) responses essential for modeling realistic social
conflict dynamics.

All code for simulation orchestration, quantized inference, and data logging was
implemented in Python (v3.10).

4.3 Experimental design and manipulations

For the first set of simulations, we implemented a 2 x 2 factorial design crossing realistic
threat (strong vs. none) and symbolic threat (strong vs. none). Agents were assigned
to one of two minimal groups using natural-language identity prompts (“<Name> is
a member of Group A. There is another group, Group B, which they are not part
of.”). To account for stochasticity, each condition was run 10 times, for a total of 40
simulations. In each run, we used a different random seed for LLM generation and
independently randomized agent-level variables (e.g., group membership). Because
agents repeatedly decide where to go, what to do, and what to say, with each decision
shaping subsequent choices and others’ reactions, these stochastic elements compound
over time and produce distinct trajectories of interaction in each run. All analyses use
data from all 10 runs per condition.

Threat manipulations were induced by injecting standardized statements into
agents’ perceptions (i.e., what was used as context in agents decision-making prompts)
and memories. Statements were adapted from established threat-scale items [57] (e.g.,
for realistic threat: “<Name> feels that the physical safety of <Group 1> members is
threatened by <Group 2>.”; for symbolic threat: “<Name> feels that the values and tra-
ditions of <Group 1> are threatened by <Group 2>.”; see Supplementary Table A5).
These belief percepts were continuously embedded within agents’ perception and
memory streams, ensuring that the intended threat information remained salient and
accessible during planning, interaction, and reflection (i.e., continuously added to the
agents’ context window when planning, acting, conversing). In effect, the manipula-
tion maintained a stable, high-intensity representation of the target threat type while
other threat dimensions were held at baseline.

To examine structural moderators, we ran a second set of simulations that intro-
duced (i) spatial segregation, implemented by assigning agents to groups based on
k-means clustering of their home coordinates on the town map, forming geographi-
cally distinct clusters that minimized intergroup overlap and maximized mean distance
between groups; and (ii) demographic asymmetry—unequal group sizes implemented
by varying relative group size, assigning 80% of agents to form the majority group
and the remaining 20% to form the minority group.

These manipulations altered the structural configuration of the environment rather
than agents’ internal beliefs, and were not reflected in any instructions or prompts.
Agents were not told whether they belonged to a majority or minority group, or
whether groups were segregated—they simply experienced these conditions through
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their environment. This yielded a fully crossed 2 (symbolic threat) x 2 (realistic
threat) x 2 (segregated—integrated) x 2 (equal-unequal group size) design, compris-
ing 160 additional simulations. The underlying agent architecture and environment
were otherwise identical across all conditions.

Each simulation ran for three simulated days, allowing multi-day interaction
and cumulative social experience to shape conflict dynamics, while maintaining
computational feasibility?.

Each environment contained the same twenty-five agents from Park et al. [10],
whose personas represent realistic variation in age (19-68), gender (44% female),
occupation (e.g., artist, shopkeeper, student, engineer), personality, and social life to
emulate plausible social heterogeneity in everyday settings of a small community. For
group assignment, agents were randomly split into two minimal groups (12 vs. 13
members), and in the structural simulations the majority—minority condition used a
fixed 20 vs. 5 split.

Finally, we report additional replication sets varying agents’ moral-value profiles
and non-minimal group paradigms (pilot) in the SI (Sets 0 and 3; SI Section E.3).

4.4 Agent probing and attitudinal measures

During runtime, agents were periodically probed via separate natural-language
queries—analogous to ecological momentary assessment (EMA) in human research.
Probes were administered in parallel to agents’ ongoing decision and interaction pro-
cesses by temporarily copying their current state (i.e., the information and memory at
the time of action or conversation) and eliciting scale responses from this duplicate con-
text. This ensured that the probes captured attitudinal states contemporaneous with
decision-making while leaving the primary simulation trajectory unaffected. These
probes adapted validated items from social-psychological scales measuring intergroup
trust [58], collaboration [59], dehumanization [60], and ingroup identification (adapted
from group identity, identity fusion, and group commitment scales; [61-64]). Items
were phrased in first-person form (e.g., “I consider <Group 1> members to be honest
and reliable”) and scored using the model’s numerical responses to 7-point Likert-type
anchors (1-totally disagree, 4-neutral, 7-totally agree). Probing occurred continuously
throughout the simulation—following new actions or conversations (probing N =
46,240)—vyielding dynamic, time-resolved measures of trust, cooperation, ingroup bias,
identification, and dehumanization attitudes. Full item lists, and reliability statistics
are provided in the SI (Section A.2).

4.5 Data logging and derived variables

Across the base and structural simulation sets, the agents produced a rich corpus
of social behavior. In the baseline forty simulations (without structural manipu-
lations), 527,387 actions were recorded, including 473,295 agent—agent interactions
(238,463 intergroup) and more than 20,000 conversations over three simulated days.
The extended structural set (160 simulations) generated over two million actions,

4Extending the simulation by one virtual day would increase runtime and GPU cost by 25-30%: roughly
600 additional GPU hours for the main design and 1,800 GPU hours for structural factors analysis.
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including 986,401 agent—agent interactions (226,592 intergroup), and approximately
90,000 conversations (~=65-75 million tokens). Statistical models were fit to data aggre-
gated at the hourly level, as individual actions occur at highly variable temporal scales
and numerous intermediate microactions (e.g., sleeping, moving, or eating) separate
socially meaningful events such as conflict or contact, rendering moment-to-moment
analyses unstable. This aggregation yielded between 15,000 and 75,000 samples per
model, depending on whether actions, conversations, or attitudes were modeled, which
differ in event frequency and sampling resolution.

All agent actions, plans, and conversations were logged with timestamps, acting
and target agent IDs, group memberships, and experimental conditions. Conversations
were analyzed using pretrained classifiers for hateful language, moral language, and
sentiment. Specifically, we applied the Elron/deberta-v3-large-sentiment® model
for sentiment polarity (F1: 0.74), Elron/deberta-v3-large-hate’® for hate speech
detection (F1: 0.61), and a roberta-base[65] model fine-tuned on the Moral Founda-
tions Twitter Corpus [MFTC; 66] to distinguish binding versus individualizing moral
language (F1: 0.76). For non-linguistic behavioral data, a separate large language
model (Mistral-Large”) classified whether each logged action was hostile (hateful,
violent, aggressive) toward outgroup members (see SI Section D.1.1).

The final dataset is event-level, with one row per logged agent action (and, when
applicable, per conversation). Each row contains the timestamp; initiator and target
IDs (and their group memberships); the run’s condition/structural settings; a brief
action log; and a hostility flag. Conversation rows additionally include derived lin-
guistic features (sentiment, hate, moral language). From initiator/target groups we
derive intergroup status and non-hostile intergroup contact (intergroup with hostility
= false), and attitudinal probe responses are recorded at their sampling times.

4.6 Analytical strategy

Analyses focused on effects of threat type and structural variables on hostile action
rates, language content (hateful language, moral language, sentiment), and attitudes
over time. The primary specification was a mixed-effects negative binomial regression
predicting the hourly rate of hostile actions from realistic and symbolic threat percep-
tion, their interaction, non-hostile intergroup contact rate in the previous hour, the
hostile action rate in the previous hour (autoregression), a log offset for total actions,
and time, with random intercepts for agents and simulation runs (nested within con-
dition). All models were estimated in R (v4.3) using glmmTMB. Analogously, additional
mixed-effects models with the same fixed-effect structure and random intercepts for
agents and runs were fit for language hatefulness, moralization, sentiment, and atti-
tudinal outcomes. System-level analyses aggregated data across all agents within each
virtual town and run to characterize collective patterns in behavior, language, and
attitudes. Full model results are provided in the Supplementary Information. All code
files are available in the project repository https://osf.io/5ac3d.

Shttps://huggingface.co/Elron/deberta-v3-large-emotion
Shttps://huggingface.co/Elron/deberta-v3-large-hate
Thttps://huggingface.co/mistralai/Mistral-Large-Instruct-2407
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To assess whether attitudes or hateful language mediate the effects of perceived
threat on hostile actions, we estimated Bayesian multilevel negative binomial media-
tion models. Ingroup bias (or hateful language) at time t—1 was treated as the mediator
linking symbolic and realistic threat perception at time ¢ — 2 to hostile actions at time
t, controlling for prior ingroup bias (or hateful language), intergroup contact rate, and
hostile action rate. Models included random intercepts for agents and simulation runs
and were estimated on N = 23,355 observations. We used weakly informative priors
on all parameters: Student-t priors on intercepts, Normal priors on regression coeffi-
cients, and Exponential priors on variance and shape parameters. Models were fit in
brms (via cmdstanr) using 4 chains with 3,000 iterations each (1,800 post—warm-up),
a 1,200-iteration warm-up, and a target acceptance rate of 0.99. All Bayesian mod-
els converged satisfactorily (R < 1.01, no divergent transitions, and effective sample
sizes > 1,000 for all parameters). Full Bayesian model outputs are provided in the SI
(Supplementary Table B16,B21).

5 Reproducibility, transparency, and robustness

Given the inherently stochastic nature of LLMs and the sequential, interdependent
design of the present simulations, reproducibility and transparency are particularly
important. Unlike typical one-off LLM uses (classification or single responses), our
framework generates chains of decisions in which each agent’s plan, action, and dia-
logue shape later prompts and perceptions, amplifying stochastic variation over time.
We therefore provide extensive details on data-generation procedures, model settings,
validation, and robustness checks following Abdurahman et al. [67]; see SI Section F.
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Extended Data

Table 1: Predicting system-level hourly hostile

action rate (M1,ys; N = 2,050).

Predictor B SE p
Intercept —6.96 0.06 <.001
Hostile action rate (lag) 0.16 0.04 < .001
Intergroup contact rate (lag) —0.30 0.07 < .001
Symbolic threat 0.17 0.05 0.002
Realistic threat 0.33 0.05 < .001
Time —-0.25 0.05 <.001
Symbolic x Realistic threat —0.14 0.05 0.007

Table 2: Predicting hourly hateful language rate

(M2a; N = 15,684).

Predictor B SE P
Intercept —7.27 0.27 <.001
Hateful language rate (lag) 0.03 0.02 0.107
Intergroup contact rate (lag) 0.06  0.05 0.244
Symbolic threat 0.46 0.12 <.001
Realistic threat 098 0.12 <.001
Time —0.01 0.05 0.822
Symbolic x Realistic threat —0.28 0.11 0.015

Table 3: Predicting ingroup bias attitudes (M3a; N = 46,240).

Predictor B SE P
Intercept 0.01 0.06 .88
Group Bias (lag) 0.12 0.01 <.001
Symbolic threat 0.39 0.05 < .001
Realistic threat 0.28 0.05 < .001
Time —0.01 0.00 .003
Symbolic x Realistic threat 0.07 0.04 .083

31



6 0.6
51 o 0.5
£
4 0 0.4
I B
» 03
5’
< 8 o0.2
2
o
S 3
1 0.1
0 0.0 T T T T T T
0 5 10 15 20 25 30
[} 5 10 15 20 25 30 Layer
Layer . . .
(b) Symbolic vs control: Wasserstein dis-
(a) Symbolic vs control: Cohen’s d. tance.
1.6
6 1.4
51 0 1.2
£.0
41 3 1.0
° n
] = 0.8
- 34 3
dc) n 0.6
£ 2 g
s 0.4
14 0.2
o 0.0
. [} 5 10 15 20 25 30
[} 5 10 15 20 25 30 Layer
Layer L. . .
(d) Realistic vs control: Wasserstein dis-
(c) Realistic vs control: Cohen’s d. tance.
1.50
5
o125
£
o @ 1.00
I B
LY @ 0.75 -
c ]
g 3
£ 0.50
S 21 S
0.25
1 0.00 |
) 5 10 15 20 25 30
ol . . . . . .
[} 5 10 15 20 25 30 Layer
Layer . e . .
(f) Symbolic vs realistic: Wasserstein dis-
(e) Symbolic vs realistic: Cohen’s d. tance.
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symbolic-threat vs realistic-threat vignettes (bottom panels).
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on the threat-state vectors. Panels show Cohen’s d and Wasserstein distance across
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condition (middle panels) and for symbolic-only vs realistic-only condition (bottom
panels).
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Table 4: Predicting hourly hostile action rate
including structural manipulations (M 1strycture;

N = 74,487).
Predictor B SE P
Intercept —-9.83 049 <.001
Intergroup contact rate (lag) —0.58 0.07 < .001
Hostile action rate (lag) 0.05 0.01 < .001
Symbolic threat 0.13 0.05 0.011
Realistic threat 0.28 0.05 <.001
Time —-0.22 0.04 <.001
Segregation —0.40 0.28 0.152
Group Size 0.08 0.28 0.788
Symbolic x Realistic —0.09 0.04 0.041
Segregation x Group Size 0.42 0.28 0.135

Appendix A Additional Materials and Stimuli

A.1 Threat perception prompts

To induce the intended threat perceptions, we injected natural-language statements
into agents’ memory and perception streams. These prompts operationalized realistic
and symbolic threat manipulations within a 2 x 2 factorial design (realistic: strong vs.
none; symbolic: strong vs. none). Each condition combined reinforcing statements for
the target threat type with suppressing statements for the non-target type, ensuring
clear differentiation across experimental cells. Table A5 lists the full set of statements
used for each threat condition.

Table A5: Belief statements used to induce or suppress perceived threat.

Threat type

Induce condition

Suppress condition

Symbolic threat

Realistic threat

<Name> strongly feels that their values

are under threat by <Group 2>.

<Name> strongly feels that their tradi-

tions are under threat by <Group 2>.

<Name> strongly feels economically

threatened by <Group 2>.

<Name> strongly feels physically

threatened by <Group 2>.

<Name> does not feel that their values
are under threat by <Group 2>.

<Name> does not feel that their tradi-
tions are under threat by <Group 2>.

<Name> does not feel economically
threatened by <Group 2>.

<Name> does not feel physically threat-
ened by <Group 2>.

A.2 Scales for Probing Agents
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Table A6: Group Identification Items

Item

I feel a strong bond with <Group 1>.

Being a <Group 1> is an important reflection of who I am.

I strongly identify with <Group 1>’s values.

I feel committed to <Group 1>.

I am willing to make personal sacrifices to support <Group 1>.

TU W N~ ;ﬁ:

Note: Adapted from multiple group identity scales [61-64].

Table A7: Group Bias Items

# Item

1 Members of my group (<Group 1>) are more moral than members of the other group
(<Group 2>).

2 Members of my group (<Group 1>) are more trustworthy than members of the other
group (<Group 2>).

3 Members of my group (<Group 1>) are more competent than members of the other
group (<Group 2>).

4 Members of my group (<Group 1>) are more kind than members of the other group

(<Group 2>).

Note: Items adapted from warmth—competence framework questionnaires [68].

Table A8: Trust Items

Item

I consider <Group 1> members to be honest and reliable.
I expect most <Group 1> members to act in good faith.
I consider <Group 2> members to be honest and reliable.
I expect most <Group 2> members to act in good faith.

=W N = :H:

Note: Adapted from the Trust and Commitment Scale [58].

Table A9: Collaboration Items

Item

I am willing to collaborate with <Group 1> members to achieve shared goals.
I am happy to share my resources with <Group 1> members when they need help.
I am willing to collaborate with <Group 2> members to achieve shared goals.
I am happy to share my resources with <Group 2> members when they need help.

B W N :ﬂ:

Note: Adapted from the Prosocialness Scale [59].
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Table A10: Dehumanization Items

Item

<Group 1> members often seem primitive and uncivilized.
<Group 1> members often seem cold and mechanical.
<Group 2> members often seem primitive and uncivilized.
<Group 2> members often seem cold and mechanical.

=W N :ﬁ:

Note: Adapted from the Blatant Dehumanization Scale [60].
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Appendix B Supplement to Main Analysis

This Appendix reports supplementary and robustness analyses complementing the
main text. Unless noted otherwise, count and rate outcomes (e.g., hostile action
rate, hateful language rate, moralized language rate) were estimated using mixed-
effects negative binomial regressions, and continuous outcomes (e.g., sentiment,
attitudes) using Gaussian mixed-effects regressions with random intercepts for agent
and simulation run. All models were fit on hourly data as specified in the main text.

B.1 Zero-order correlations of main variables

Table B11 reports zero-order correlations among all key constructs, computed at the
agent level by averaging each variable across the three simulated days. These descrip-
tive associations provide an overview of how threat, hostile behavior, language use,
attitudes, and intergroup contact co-occur across the simulations.

Table B11: Zero-order correlations among agent-level variables (averaged across
the three-day simulation).

Real. Symb. Host. Hate Sent. Bias Cont. Bind. Indiv.

Real. threat 1.00 0.00 005 025 -044 053 0.03 047 0.82
Symb. threat  0.00 1.00 003 010 -0.20 0.74 0.08 045 0.23
Hostile rate 0.05  0.03 1.00 080 -0.72 0.30 0.01 026 0.32

Hate lang. 0.25 0.10 0.80 1.00 -0.81 047 0.04 033 0.49
Sentiment -0.44 -0.20 -0.72 -0.81 1.00 -0.65 0.02 -0.45 -0.62
Group bias 053 074 030 047 -065 1.00 0.05 0.59 0.67
Contact 0.03 0.08 0.01 004 002 0.05 1.00 0.25 0.07

Bind. moral 0.47 045 026 033 -045 059 0.25 1.00 0.80
Indiv. moral 0.82 023 032 049 -062 067 007 0.80 1.00

B.2 Language dynamics
B.2.1 Hateful language

Model M2a examines whether threat perceptions and prior interaction history predict
the rate of hateful language, using hourly conversation-level data.

B.2.2 Sentiment

Model M2b predicts average sentiment within an hour using the same hourly
conversation data (N = 15,684).

B.2.3 Moral language

Model M2c¢c and Model M2d examine how threat shapes the moral content of
conversations, distinguishing binding (loyalty, authority, purity) and individualizing
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Table B12: Predicting hourly hateful language
rate (M2a; N = 15,684).

Predictor B SE P
Intercept —7.27 027 <.001
Hateful language rate (lag) 0.03  0.02 0.107
Intergroup contact rate (lag) 0.06 0.05 0.244
Symbolic threat 046 0.12 <.001
Realistic threat 098 0.12 <.001
Time —0.01 0.05 0.822
Symbolic x Realistic threat —-0.28 0.11 0.015

Table B13: Predicting hourly mean sentiment

(M2b).
Predictor B SE p
Intercept 1.70 0.04 < .001
Intergroup contact rate (lag) 0.00 0.00 0.032
Symbolic threat —0.05 0.01 <.001
Realistic threat —-0.10 0.01 <.001
Time 0.02 0.00 < .001
Sentiment (lag) 0.03 0.00 < .001
Symbolic x Realistic threat —-0.01 0.01 0.080

(harm/care, fairness) moral language based on Moral Foundations Theory [69]. Both
models predict the hourly rate of moralized language use using the same hourly
conversation data (N = 15,684).

Table B14: (Panel A). Predicting hourly rate of
binding moral language (M2c).

Predictor B SE p
Intercept —1.46 0.05 < .001
Binding (lag) 0.08 0.01 < .001
Intergroup contact rate (lag) —0.02  0.01 .007
Symbolic threat 0.31 0.02 <.001
Realistic threat 0.33 0.02 < .001
Time 0.03 0.01 < .001
Symbolic x Realistic threat —-0.16 0.02 < .001
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Table B15: (Panel B). Predicting hourly rate of
individualizing moral language (M2d).

Predictor B SE p
Intercept —2.62 0.08 <.001
Individualizing (lag) 0.07 0.01 < .001
Intergroup contact rate (lag) —0.01  0.01 .203
Symbolic threat 0.08 0.06 157
Realistic threat 0.64 0.06 < .001
Time 0.04 0.01 < .001
Symbolic x Realistic threat 0.03 0.06 .614

B.2.4 Mediation of threat effects on hostile action rate through
hateful language

To assess whether hateful language mediates the effects of perceived threat on hostile
actions, we estimated a Bayesian multilevel mediation model (brms). Hateful language
rate at time ¢ — 1 was specified as the mediator linking symbolic and realistic threat
perception (at ¢ — 2) to hostile actions at time ¢, controlling for prior hateful lan-
guage, intergroup contact rate, and hostile action rate, with random intercepts for
agents and simulation run (N = 23,355). We used weakly informative priors on all
parameters (Student-t priors on intercepts, Normal priors on regression coefficients,
and exponential priors on variance and shape parameters).

Posterior estimates indicated small but credibly positive a paths from both threat
types to hateful 1anguage (6a,rea1istic = 0.06 [0047 007]7 ﬂa,symbolic = 0.03 [0-017 004])
By contrast, the b path from hateful language to hostile actions was slightly negative
and practically small (8, = —0.05 [—0.11, 0.00]), indicating that higher levels of hateful
language do not predict increases in subsequent hostile actions and may, if anything, be
weakly attenuating. Consistent with this, the resulting indirect effects were extremely
small, negative, and effectively centered on zero (Sindirect, realistic = —0.00 [—0.01, 0.00];
Bindirect, symbolic = —0.00 [0.00, 0.00]), providing no evidence that hateful language
mediates the effects of threat on hostility.

In contrast, the direct effect of realistic threat on hostile actions remained robustly
positive (Bdirect, realistic = 0.26 [0.10, 0.43]), while the direct effect of symbolic threat
was positive but more uncertain (Bdirect, symbolic = 0.13 [—0.04, 0.30]). Overall, these
results indicate that (1) hateful language does not escalate hostile behavior, (2) hateful
language does not constitute a meaningful mediating pathway from threat to hostility,
and (3) hostile actions are driven primarily by perceived threat, especially realistic
threat, via a direct route rather than via hateful language.
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Table B16: Bayesian mediation of threat effects on hostile actions via hateful language

(N = 23,355).
Effect Estimate 95% Crl  pd (%)
a (Realistic threat — Hateful language) 0.06 [0.04, 0.07]  100.00
a (Symbolic threat — Hateful language) 0.03 [0.01, 0.04] 99.36
b (Hateful language — Hostility) —0.05 [-0.11, 0.00] 98.09
Indirect (Realistic threat — Hateful language — Hostility) —0.00 [—0.01, 0.00] 98.09
Indirect (Symbolic threat — Hateful language — Hostility) —0.00 [0.00, 0.00] 97.45
Direct (Realistic threat — Hostility) 0.26 [0.10, 0.43] 99.90
Direct (Symbolic threat — Hostility) 0.13 [—0.04, 0.30] 93.67

All estimates are posterior medians with 95% credible intervals (Crl) and posterior
probability of direction (pd)

B.3 Attitudes
B.3.1 Ingroup bias attitudes

Model M3a predicts agents’ average ingroup bias scores using the data from probing
agents throughout the simulation (N = 46,240). Agents were probed when making a
decision by eliciting responses to group identity scales.

Table B17: Predicting ingroup bias attitudes

(M3a).
Predictor B8 SE p
Intercept 0.01 0.06 .88
Group Bias (lag) 0.12 0.01 < .001
Symbolic threat 0.39 0.05 <.001
Realistic threat 0.28 0.05 < .001
Time —0.01 0.00 0.003

Symbolic x Realistic threat 0.07 0.04 0.083

B.3.2 Ingroup identity attitudes

Model M3b predicts agents’ average group identity scores using the data from probing
agents throughout the simulation (N = 46,240). Agents were probed when making a
decision by eliciting responses to group identity scales.

B.3.3 Predicting attitudes from prior hateful language

We tested whether hateful language predicted subsequent changes in ingroup bias,
controlling for prior non-hostile intergroup contact, prior hostile action rate, prior atti-
tudes, and threat conditions (Table B19; N = 37,105). This analysis evaluated whether

40



Table B18: Predicting group identity attitudes

(M3b).
Predictor B SE p
Intercept 0.00 0.01 .89
Group Identity (lag) 0.64 0.01 <.001
Symbolic threat 0.24 0.01 <.001
Realistic threat 0.07 0.01 < .001
Time 0.10 0.00 < .001

Symbolic x Realistic threat —0.01  0.01 0.083

language functions as a driver of cognitive orientations. We found no evidence that
hateful language predicted later attitudes, whereas prior hostile action rate and threat
did. This suggests that language does not shape attitudes but rather co-occurs with
threat-induced ingroup bias. Note that hostile action rate did predict more ingroup
bias (0.02,p = .002; Table B19), indicating potential reinforcement effects and feed-
back loops of ingroup bias increasing hostile action rate which then make agents more
biased against each other leading to an more hostile actions.

Table B19: Predicting bias attitudes from prior
hateful language.

Predictor B SE p
Intercept 443 0.07 <.001
Intergroup contact rate (lag) —0.00 0.01 0.563
Hostile action rate (lag) 0.02 0.01 0.002
Hateful language rate (lag) 0.01 0.01 0.363
Group Bias (lag) 0.15 0.01 < .001
Symbolic threat 0.43 0.06 < .001
Realistic threat 0.31 0.06 < .001
Time —0.02 0.01 0.001
Symbolic x Realistic threat 0.10 0.06 0.086

B.3.4 Predicting language from prior group bias

We next tested the reverse relationship, whether prior group bias predicted later hate-
ful language, controlling for prior intergroup contact rate, hostile action rate, and
threat manipulations (Table B20; N = 37,105). This model tested whether attitudes
contribute to subsequent linguistic hostility. We do not find evidence that attitudes
predict later hateful language when controlling for threat and prior hostility. Hate-
ful language therefore appears as a concurrent expression of perceived threat, not a
downstream product of group bias.
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Table B20: Predicting hateful language from
prior attitudes.

Predictor B SE P
Intercept —5.01 0.26 < .001
Intergroup contact rate (lag) 0.04 0.06 0.478
Hostile action rate (lag) 0.03 0.02 0.078
Hateful language rate (lag) 0.03 0.02 0.258
Group Bias (lag) 0.10 0.06 0.130
Symbolic threat 047 0.11 <.001
Realistic threat 0.81 0.11 <.001
Time —0.06 0.06 0.267
Symbolic x Realistic threat —0.27 0.11 0.014

B.3.5 Mediation of threat effects on hostile action rate through
group bias

To assess whether attitudinal bias mediates the effects of perceived threat on hostile
actions, we estimated a Bayesian multilevel mediation model (brms). Group bias at
time ¢ —1 was specified as the mediator linking symbolic and realistic threat perception
(at t — 2) to hostile actions at time ¢, controlling for prior group bias, intergroup
contact rate, and hostile action rate, with random intercepts for agents and simulation
run (N = 23,355). We used weakly informative priors on all parameters (Student-t
priors on intercepts, Normal priors on regression coefficients, and exponential priors
on variance and shape parameters).

Posterior estimates showed sizable positive a paths from both threat types to group
bias, mirroring the main attitudes model (erealistic = 0.28 [0.16, 0.39]; Ba7symbolic =
0.38 [0.27, 0.50]). In turn, higher bias at time ¢ — 1 predicted more hostile actions
at time ¢ (Bb = 0.25 [0.07, 0.43]). As a result, we observed credible indirect effects
of both realistic and symbolic threat on hostility via bias (Bindirect’ realistic = 0.07
[0.02, 0.14]; Bindirect’ symbolic = 0.09 [0.02, 0.18]). The direct effect of realistic threat
remained positive (Bdirect, realistic = 0.17 [0.02, 0.37]), whereas symbolic threat showed
essentially no direct effect on hostile actions (Bdirecm symbolic = —0.00 [—0.21, 0.21]).

Taken together, these results indicate that both realistic and symbolic threat reli-
ably increase group bias, and that this elevated bias, in turn, predicts more hostile
actions. Hostile behavior thus appears to be substantially mediated by intergroup bias
for both threat types, with realistic threat additionally exerting a sizable residual
direct effect on hostility.
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Table B21: Bayesian mediation of threat effects on hostile actions via
ingroup bias (N = 23,355).

Effect Estimate 95% Crl  pd (%)
a (Realistic threat — Bias) 0.28  [0.16,0.39]  100.00
a (Symbolic threat — Bias) 0.38  [0.27, 0.50] 100.00
b (Bias — Hostility) 025 [0.07,0.43  99.65
Indirect (Realistic threat — Bias — Hostility) 0.07  [0.02, 0.14] 99.65
Indirect (Symbolic threat — Bias — Hostility) 0.09  [0.02, 0.18] 99.65
Direct (Realistic threat — Hostility) 0.17  [0.02, 0.37] 95.71
Direct (Symbolic threat — Hostility) —0.00 [-0.21, 0.21] 50.65

All estimates are posterior medians with 95% credible intervals (CrI) and
posterior probability of direction (pd)
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B.4 System-level Models

To assess whether the patterns observed at the agent level were also present at the
collective level, we repeated the main hostile action (M1) and hateful language (M2a)
models using system-level hourly counts, aggregated across all agents. Model structure
was otherwise identical. This robustness check evaluates whether aggregate group
dynamics (e.g., total occurrence of hostile actions in the town) mirror agent-level
processes.

System-level models yielded near-identical patterns to agent-level analyses: real-
istic threat perception exerted the strongest effects, symbolic threat perception had
a smaller effect, and the interaction between threat types was negative. Prior hostile
action rate showed somewhat stronger autocorrelation at the system-level, reflecting
the persistence of collective hostility once it emerged. Overall, these findings confirm
that the dynamics observed at the individual level scale up to the collective level.

Table B22: Predicting system-level hourly hostile
action rate (N = 2,050).

Predictor B SE P
Intercept —6.96 0.06 < .001
Hostile action rate (lag) 0.16 0.04 < .001
Intergroup contact rate (lag) —0.30 0.07 < .001
Symbolic threat 0.17  0.05 0.002
Realistic threat 0.33 0.05 <.001
Time —-0.25 0.05 <.001
Symbolic x Realistic threat —0.14  0.05 0.007

Table B23: Predicting system-level hourly hate-
ful language rates (N = 1,654).

Predictor B SE p
Intercept —6.36 0.12 < .001
Hateful language rate (lag) 0.03 0.04 0.542
Intergroup contact rate (lag) —0.05 0.07 0.426
Symbolic threat 044 0.11 <.001
Realistic threat 0.98 0.11 <.001
Time —0.04 0.05 0.460
Symbolic x Realistic threat —-0.25 0.11 0.022
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Appendix C Supplement to Structural Contexts
Analyses

Unless noted otherwise, count and rate outcomes (e.g., hostile action rate, hateful
language rate, moralized language rate) were estimated using mixed-effects negative
binomial regressions, and continuous outcomes (e.g., sentiment, attitudes) using Gaus-
sian mixed-effects regressions with random intercepts for agents and simulation run.
All models were fit on hourly data as specified in the main text.

C.1 Hostile actions models

Table C24: Predicting hourly hostile action rate
(M]-structure; N = 74,487)

Predictor B SE p
Intercept —-9.83 049 <.001
Intergroup contact rate (lag) —0.58 0.07 < .001
Hostile action rate (lag) 0.05 0.01 <.001
Symbolic threat 0.13 0.05 0.011
Realistic threat 0.28 0.05 < .001
Time —-0.22 0.04 <.001
Segregation —0.40 0.28 0.152
Group Size 0.08 0.28 0.788
Symbolic x Realistic —0.09 0.04 0.041
Segregation X Group Size 0.42 0.28 0.135

C.2 Language models

Table C25: Predicting hateful language
(M2astructure§ N = 32,059)

Predictor B SE p
Intercept —7.46 0.28 < .001
Hateful language rate (lag) 0.09 0.02 < .001
Intergroup contact rate (lag) 0.09 0.04 0.028
Symbolic threat 0.42 0.13 0.002
Realistic threat 0.89 0.14 <.001
Time —0.07 0.04 0.054
Segregation —0.05 0.09 0.554
Group Size —0.12  0.09 0.187
Symbolic X Realistic —0.41 0.13 0.002
Segregation x Group Size —0.08 0.09 0.402
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Table C26: Predicting sentiment (M 2bstructure)
(N = 32,059).

Predictor B SE P
Intercept 1.73 0.04 <.001
Intergroup contact rate (lag) 0.00  0.00 0.660
Sentiment (lag) 0.03 0.00 < .001
Symbolic threat —0.03 0.00 < .001
Realistic threat —0.05 0.00 < .001
Time 0.02 0.00 < .001
Segregation 0.02 0.00 <.001
Group Size 0.05 0.00 <.001
Symbolic x Realistic 0.00 0.00 0.298
Segregation X Group Size —0.01  0.00 0.002

Table C27: Predicting binding moral language
(Mzcstructure) (N - 32,059)

Predictor B SE P
Intercept —1.64 0.06 < .001
Binding language (lag) 0.10 0.00 < .001
Intergroup contact rate (lag) —0.01  0.00 0.147
Symbolic threat 0.43 0.02 <.001
Realistic threat 043 0.02 <.001
Time —0.01 0.00 0.014
Segregation —0.05 0.01 <.001
Group Size —0.12 0.01 < .001
Symbolic x Realistic —0.27 0.02 <.001
Segregation x Group Size 0.02 0.01 0.005

Table C28: Predicting individualizing moral lan-
guage (MQdStTucture) (N = 32,059)

Predictor B8 SE 14
Intercept -3.22 0.09 <.001
Individualizing language (lag) 0.12 0.01 < .001
Intergroup contact rate (lag) —-0.01 0.01 0.505
Symbolic threat 0.34 0.05 <.001
Realistic threat 094 0.05 <.001
Time —0.02 0.01 0.082
Segregation —0.05 0.01 < .001
Group Size —-0.34 0.02 < .001
Symbolic x Realistic -0.34 0.05 < .001
Segregation X Group Size —0.01 0.01 0.381
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C.3 Attitudes models

Table C29: Predicting group bias attitudes
(M3astructure) (N - 46,156)

Predictor B SE p
Intercept 0.03 0.04 0.360
Group Bias (lag) 0.17 0.00 < .001
Symbolic threat 0.32 0.01 <.001
Realistic threat 0.23 0.01 <.001
Time —0.00 0.00 0.227
Segregation 0.00 0.01 0.832
Group Size —0.05 0.01 <.001
Symbolic x Realistic 0.15 0.01 <.001

Segregation X Group Size 0.00 0.01 0.927

Table C30: Predicting group identity attitudes
(M3bstructure§ N = 46,156)

Predictor B SE p
Intercept —0.01 0.01 0.704
Group Identity (lag) 0.66 0.00 < .001
Symbolic threat 0.24 0.01 <.001
Realistic threat 0.08 0.01 <.001
Time 0.08 0.00 < .001
Segregation 0.00 0.00 0.394
Group Size 0.00 0.00 0.312
Symbolic x Realistic —0.01 0.01 0.075

Segregation x Group Size 0.00 0.00 0.965

C.4 Predicting intergroup contact rate from threat and
structural conditions

We tested whether realistic or symbolic threat manipulations, or structural features
of the simulated environment, predicted the rate of non-hostile intergroup contact
events. We find no significant effects of either threat type, indicating that threat did
not systematically alter rates of cross-group interaction (Table C34). By contrast,
structural factors exerted moderate to strong effects: segregation and majority status
both reduced intergroup contact rate, and their interaction showed that majority
agents in segregated settings engaged in the fewest cross-group interactions. These
results confirm that non-hostile intergroup contact emerged as an autonomous, self-
organizing process primarily constrained by structural context rather than driven by
threat.
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Table C31: Predicting trust attitudes

(M3cstructure) (N = 17,202).
Predictor B SE P
Intercept —0.03 0.02 0.098
Trust (lag) 0.63 0.01 < .001
Symbolic threat —-0.14 0.01 <.001
Realistic threat —-0.14 0.01 <.001
Time —0.04 0.00 < .001
Segregation 0.00 0.01 0.424
Group Size —0.04 0.01 <.001
Symbolic x Realistic 0.11 0.01 <.001
Segregation x Group Size 0.01 0.01 0.342

Table C32: Predicting collaboration attitudes

(M3dstructm’e) (N = 17,202)

Predictor B SE p
Intercept —0.03 0.02 0.118
Collaboration (lag) 0.55 0.01 < .001
Symbolic threat —0.15 0.01 < .001
Realistic threat —0.15 0.01 < .001
Time —0.03 0.00 < .001
Segregation 0.01 0.01 0.392
Group Size —0.06 0.01 <.001
Symbolic x Realistic 0.14 0.01 <.001
Segregation X Group Size 0.01 0.01 0.322

Table C33: Predicting dehumanization atti-
tudes (M3esiructure) (N = 17,202).

Predictor B SE p
Intercept —0.09 0.02 <.001
Dehumanization (lag) 0.18 0.01 < .001
Symbolic threat 0.21 0.01 <.001
Realistic threat 0.40 0.01 <.001
Time —-0.07 0.01 < .001
Segregation 0.01 0.01 0.398
Group Size —0.06 0.01 <.001
Symbolic x Realistic 0.20 0.01 <.001
Segregation x Group Size 0.00 0.01 0.734
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Table C34: Predicting intergroup contact rates
(N = 74,487).

Predictor B SE p
Intercept —-1.75 0.06 < .001
Intergroup contact rate (lag) 0.46 0.01 < .001
Symbolic threat 0.01 0.01 0.470
Realistic threat —0.01 0.01 0.527
Time (hours) —-0.05 0.01 <.001
Segregation —0.23 0.01 <.001
Group Size (majority) —0.55 0.01 < .001
Symbolic x Realistic threat 0.00 0.01 0.892
Segregation x Group Size —0.13 0.01 <.001
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C.5 System-Level Models
C.5.1 Hostile actions

We re-estimated the main model (M1) at the system-level, aggregating hostile actions
across all agents (i.e., total occurrence of hostile actions in the town) to produce a
global hostile action rate for the whole virtual town (Table C35). The results closely
mirrored the agent-level analyses. Realistic threat exerted a positive effect on hate-
ful behavior (B = 0.29, p < .001), while symbolic threat was weaker (B = 0.19,
p < .001), their interaction was negative but non-significant (3 = —0.07, p = .056).
Prior intergroup contact rate again reduced hostility (B = —0.50, p < .001), whereas
prior hostile action rate predicted continued hostility (B =0.12, p < .001). Structural
factors also exhibited systematic effects at the collective level. Segregation substan-
tially reduced overall hostility (B = —0.95, p < .001), but majority groups displayed
greater hostility overall (B = 0.51, p = .006), and their dominance intensified under
segregation (Binteraction = 1.03, p < .001). Together, these findings confirm that
the threat—hostility relationship generalizes from individual to collective scales while

revealing that structural asymmetries shape the distribution of hostility across groups.

Table C35: Predicting system-level hostile action
rate (N = 7,769).

Predictor B SE P
Intercept —7.82 0.18 <.001
Intergroup contact rate (lag) —0.50 0.08 < .001
Hostile action rate (lag) 0.12 0.01 < .001
Symbolic threat 0.19 0.03 <.001
Realistic threat 0.29 0.03 <.001
Segregation —-0.95 0.18 < .001
Group Size (majority) 0.51 0.19 0.006
Time —-0.32 0.03 <.001
Symbolic x Realistic threat —0.07 0.03 0.056
Segregation X Group Size 1.03 0.18 <.001

C.5.2 Hateful language

We next examined hateful language aggregated at the system-level. Consistent with
agent-level results, both threat types increased the rate of hateful language in the
system, with realistic threat perception producing much stronger effects and effects
of symbolic threat perception nearly vanishing when realistic threats were perceived.
Structural asymmetries were again pronounced: segregation reduced hateful lan-
guage overall, while majority groups produced substantially more under segregation
(Table C36).
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Table C36: Predicting system-level rate of hate-
ful language (N = 5,867).

Predictor B8 SE P
Intercept —6.90 0.13 <.001
Hateful language rate (lag) 0.19 0.03 < .001
Intergroup contact rate (lag) 0.10 0.09 0.246
Segregation —0.38 0.07 < .001
Group Size (majority) 0.37 0.09 < .001
Symbolic threat 0.46 0.12 <.001
Realistic threat 0.89 0.12 <.001
Time —0.11  0.04 0.008
Segregation x Group Size 0.36 0.07 < .001
Symbolic x Realistic threat —0.39 0.12 0.001

C.5.3 Sentiment

We next examined sentiment aggregated at the system-level. Consistent with agent-
level results, both symbolic and realistic threat perceptions reduced overall sentiment,
with realistic threat exerting the stronger negative effect and and co-occurrence of
both threats amplifying this effect. Structural asymmetries also mirrored the agent-
level results: segregation and majority-group status were associated with more positive
sentiment (Table C37).

Table C37: Predicting system-level sentiment

(N = 5,867).
Predictor B SE p
Intercept 276 0.00 <.001
Sentiment (lag) 0.04 0.00 < .001
Intergroup contact rate (lag) 0.02 0.00 < .001
Segregation 0.03 0.00 < .001
Group Size (majority) 0.05 0.00 < .001
Symbolic threat —0.04 0.00 < .001
Realistic threat —0.07 0.00 < .001
Time 0.02 0.00 < .001
Segregation X Group Size —-0.03 0.00 <.001
Symbolic x Realistic threat —0.01 0.00 0.001

C.5.4 Binding moral language

At the collective level, binding moral language increased sharply under both threat
types, with a negative interaction indicating non-additivity under combined threat.
Segregation reduced binding language overall, and majority—minority differences
converged under segregation (Table C38).
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Table C38: Predicting system-level rate of bind-
ing moral language (N = 5,867).

Predictor B SE P
Intercept —1.68 0.02 <.001
Binding language (lag) 0.14 0.01 < .001
Intergroup contact rate (lag) —0.05 0.01 < .001
Segregation —0.10 0.01 < .001
Group Size (majority) —-0.04 0.01 <.001
Symbolic threat 0.41 0.02 <.001
Realistic threat 0.40 0.02 < .001
Time —0.01 0.01 0.008
Segregation X Group Size 0.09 0.01 <.001
Symbolic x Realistic threat —0.26 0.02 < .001

C.5.5 Individualizing moral language

Finally, individualizing moral language followed a nearly identical pattern to binding
moralization but was dominated by realistic threat with the effect of symbolic threat
perception vanishing when realistic threats were perceived. We further observed strong
threat effects and reduced individualizing language under segregation. The positive
segregation x Group Size interaction indicated convergence in individualizing language
between groups under segregation (Table C39).

Table C39: Predicting system-level rate of indi-
vidualizing moral language (N = 5,867).

Predictor B SE P
Intercept —3.22 0.05 <.001
Individualizing language (lag) 0.17 0.01 < .001
Intergroup contact rate (lag) —-0.07 0.02 <.001
Segregation —0.10 0.01 < .001
Group Size (majority) —-0.25 0.02 < .001
Symbolic threat 0.36 0.05 <.001
Realistic threat 0.89 0.05 < .001
Time —0.03 0.01 0.009
Segregation x Group Size 0.06 0.01 < .001
Symbolic x Realistic threat —-0.32 0.05 <.001
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Appendix D Supplement to Probing LLM
Activations

D.1 Prompts
D.1.1 Prompts for detecting hostile actions

To detect intergroup hostile actions in the simulation logs, we used the following
prompt:

Analyze the description of an action between a member of GROUP_A and a member
of GROUP_B and determine whether the action is hostile, defined as aggressive,
harmful, or hateful behavior (e.g., physical or verbal attacks, threats,
harassment, trolling, or discriminating against others).

Here is the action:
[ACTION]

Respond only with "yes" or "no".

D.1.2 Prompts for evaluating hostility in steering experiments

We used the following prompt to determine the extent of hostility expressed in an
agent’s behavior in the steering experiments.

You are an expert evaluator of intergroup behavior.

**Scenario: xx*
{scenario}

**Person’s behavioral response:*x*
{response}

*xTasgk: **
Evaluate the hostility level of this behavioral response toward Group B.

Provide ONLY valid JSON:

{
"rating": <float 1.0-5.0>,
"behavior_type": "<friendly|neutral|verbal_attack|social_exclusion|physical_threat|discriminationl|s
"specific_actions": ["<actionl>", "<action2>"],
"reasoning": "<brief explanation>",
"is_hostile": <true|false>
}

**Rating scale:*x*

1.0 = Friendly/supportive

= Neutral

Mildly hostile (avoidance)

Moderately hostile (verbal aggression)
Extremely hostile (threats/violence)

ocooo

g W N

53



Respond with JSON only.
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D.2 Internal Threat States
D.2.1 Results
Validation of Internal Threat States

Table D40: Mean projection values and standard deviations
of control-vignettes on each threat-state vector (layer 32).

Threat-state vector Control Type M SD
Symbolic-threat Symbolic-threat  Symbolic-control -1.75  0.59
Symbolic-threat Unrelated-control  0.14  0.48
Realistic-threat Realistic-threat Realistic-control -1.43  0.65
Realistic-threat Unrelated-control ~ 0.93  0.48

Table provides an overview of how much the control scenarios
activate the respective threat state and shows low or negative
values indicating minimal activation.

Table D41: Projections of threat vignettes onto threat-state vectors (layer 32).

Threat-state vector Vignette Contrast df t p Cohen’s d D PD

Symbolic-threat Symbolic-threat vs symbolic-control ~ 540.6 15.18 < .001 1.25 0.65 < .001
Realistic-threat Realistic-threat vs realistic-control 528.8 35.34 < .001 2.90 1.61 < .001
Symbolic-vs-realistic Symbolic-threat vs realistic-threat 552.6 48.01 < .001 3.95 1.66 < .001
Symbolic-threat Symbolic-threat vs unrelated-control = 497.2 32.33 < .001 2.65 1.06 < .001
Realistic-threat Realistic-threat vs unrelated-control ~ 557.1 30.82 < .001 2.53 1.08 < .001

We report Welch ¢-test degrees of freedom (df), test statistic (¢), p-value, Cohen’s d, Wasserstein distance
D between projection distributions, and the associated p-value (pp). All tests are two-tailed. Table
show significantly stronger activation of the threat state in corresponding threat vs control scenarios.
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Cohen's d
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Fig. D3: Difference in projection strength (Cohen’s d) between realistic-threat and
realistic-control vignettes across layers. Projection strength is defined as the dot prod-
uct of each vignette’s residual-stream activation (vector) onto the previously identified
realistic-threat vector. Effect sizes increase in later layers, in line with deeper layers
encoding more abstract concepts and thus more cleanly separate threat from control,
whereas earlier layers primarily reflect lower-level features (e.g., grammar and struc-
ture) that are balanced across vignettes.
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Fig. D4: Wasserstein distance between projection distributions for realistic-threat and
realistic-control vignettes across layers. Higher values in later layers indicate strong
distributional separation of internal states associated with realistic threat versus no
realistic threat.
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Fig. D5: Mean projection scores for realistic-threat and realistic-control vignettes
across layers for the realistic-threat vector. Figure shows that held-out realistic-threat
scenarios consistently yield higher projections than control scenarios, which show near
zero or negative projections indicating they did not activate threat representations.
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Fig. D6: Difference in projection strength (Cohen’s d) between symbolic-threat and
symbolic-control vignettes across layers. Projection strength is defined as the dot prod-
uct of each vignette’s residual-stream activation (vector) onto the previously identified
symbolic-threat vector. Effect sizes increase in later layers, in line with deeper layers
encoding more abstract concepts and thus more cleanly separate threat from control,
whereas earlier layers primarily reflect lower-level features (e.g., grammar and struc-
ture) that are balanced across vignettes.
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Fig. D7: Wasserstein distance between projection distributions for symbolic-threat
and symbolic-control vignettes across layers. Higher values in later layers indicate
that symbolic-threat and no-symbolic-threat scenarios are encoded as clearly distinct
internal states.
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Fig. D8: Mean projection scores for symbolic-threat and symbolic-control vignettes
across layers for the symbolic-threat vector. Figure shows that held-out symbolic-
threat scenarios systematically yield higher projections than control scenarios, with
differences increasing toward later layers.
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Fig. D9: Difference in projection strength (Cohen’s d) between symbolic-threat and
realistic-threat vignettes across layers. Projection strength is defined as the dot prod-
uct of each vignette’s residual-stream activation (vector) onto the previously identified
symbolic-threat vector. Effect sizes increase in later layers, in line with deeper lay-
ers encoding more abstract concepts and thus more cleanly separate symbolic threat
from realistic threat, whereas earlier layers primarily reflect lower-level features (e.g.,
grammar and structure) that are balanced across vignettes.
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Fig. D10: Wasserstein distance between projection distributions for symbolic-threat
and realistic-threat vignettes across layers for the symbolic-versus-realistic contrast
vector. Higher distances in later layers indicate strong distributional separation
between symbolic and realistic threat states.
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Fig. D11: Mean projection scores for symbolic-threat and realistic-threat vignettes
across layers for the symbolic-versus-realistic contrast vector. Positive values indicate
layers where symbolic-threat vignettes load more strongly toward the symbolic pole
and realistic-threat vignettes toward the realistic pole, showing that the two threat

types are encoded as distinct activation patterns rather than a single undifferentiated
threat state.
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Ezxperimental Stimuli Map onto Internal Threat States

Table D42: Mean projection values of experimental
manipulations projected onto each threat-state vector
(layer 32).

Threat-state vector Experimental Condition M SD

Symbolic-threat Symbolic-only 0.00 0.52
Symbolic-threat Both-threat 0.29 0.27
Symbolic-threat No-threat -1.28  0.34
Realistic-threat Realistic-only 0.62 0.39
Realistic-threat Both-threat 0.92 0.27
Realistic-threat No-threat -0.64 0.33
Symbolic—vs-realistic =~ Both-threat 2.71 0.37
Symbolic—vs-realistic ~ Symbolic-only 3.29 0.29

Table D43: Projection contrasts of experimental manipulations onto threat-state vectors (layer
32).

Threat state Condition Contrast df t p Cohen’s d D PD

Symbolic-threat Symbolic-only vs no-threat 158.4 20.31 < .001 2.91 1.28 < .001
Symbolic-threat Both-threat vs no-threat 184.9 35.50 < .001 5.16 1.58 <.001
Realistic-threat Realistic-only vs no-threat 173.4 23.67 < .001 3.45 1.26 < .001
Realistic-threat Both-threat vs no-threat 184.9 35.65 < .001 5.18 1.56 < .001
Symbolic—vs-realistic =~ Symbolic-only vs realistic-only  174.3 6.52 < .001 0.96 0.30 < .001

We report Welch ¢-test degrees of freedom (df), test statistic (¢), p-value, Cohen’s d, Wasserstein
distance D between projection distributions, and associated p-value (pp). This is a two-tailed test.
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Fig. D12: Difference in projection strength (Cohen’s d) between realistic-only and
no-threat stimuli across layers, measured on the realistic-threat vector. Projection
strength is defined as the dot product of each vignette’s residual-stream activation
(vector) onto the previously identified realistic-threat vector. Effect sizes increase in
later layers, indicating that realistic-threat stimuli selectively activate the realistic-
threat representation and are strongly separable from no-threat stimuli in deeper
layers.
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Fig. D13: Wasserstein distance between projection distributions for realistic-only and
no-threat stimuli across layers on the realistic-threat vector. Higher values in later
layers indicate strong distributional separation between internal states induced by
realistic-threat versus no-threat stimuli.
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Fig. D14: Mean projection scores for realistic-only and no-threat stimuli across lay-
ers for the realistic-threat vector. Realistic-threat stimuli yield consistently higher
projections than no-threat stimuli, with no-threat stimuli showing low or negative
projections, consistent with successful suppression of realistic-threat activation in the
no-threat condition.
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Fig. D15: Difference in projection strength (Cohen’s d) between combined (realis-
tic+symbolic) and no-threat stimuli across layers, measured on the realistic-threat
vector. Later layers show very large effect sizes, indicating that combined-threat stimuli
strongly activate the realistic-threat representation relative to no-threat statements.

0.4
0.2
0.0
0 5 10 15 20 25 30
Layer

Fig. D16: Wasserstein distance between projection distributions for combined (real-
istic+symbolic) and no-threat stimuli across layers on the realistic-threat vector. High
Wasserstein distances in upper layers indicate strong distributional separation between
internal states induced by combined-threat versus no-threat stimuli.
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Fig. D17: Mean projection scores for combined (realistic+symbolic) and no-threat
stimuli across layers for the realistic-threat vector. Combined-threat stimuli yield large
positive projection differences relative to no-threat stimuli which have low or negative
values, confirming that they robustly activate the realistic-threat state and that no-
threat condition suppresses it.
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Fig. D18: Difference in projection strength (Cohen’s d) between symbolic-only and
no-threat stimuli across layers, measured on the symbolic-threat vector. Later layers
exhibit large effect sizes, indicating strong separation between symbolic-threat and
no-threat internal states.
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Fig. D19: Wasserstein distance between projection distributions for symbolic-only
and no-threat stimuli across layers on the symbolic-threat vector. Higher distances
in deeper layers indicate that symbolic-threat and no-threat stimuli are encoded as
clearly distinct internal states.
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Fig. D20: Mean projection scores for symbolic-only and no-threat stimuli across
layers for the symbolic-threat vector. Symbolic-threat stimuli show consistently higher
projections than no-threat stimuli, which have low or negative projections, indicating
successful suppression of symbolic-threat activation in the no-threat condition.
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Fig. D21: Difference in projection strength (Cohen’s d) between combined (realis-
tic+symbolic) and no-threat stimuli across layers, measured on the symbolic-threat
vector. Large effect sizes in later layers show that combined-threat stimuli strongly
activate the symbolic-threat representation relative to no-threat stimuli.
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Fig. D22: Wasserstein distance between projection distributions for combined (realis-
tic+symbolic) and no-threat stimuli across layers on the symbolic-threat vector. High
Wasserstein distances in later layers indicate strong distributional separation between
combined-threat and no-threat internal states.
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Fig. D23: Mean projection difference between combined (realistic+symbolic) and no-
threat stimuli across layers for the symbolic-threat vector. Combined-threat stimuli
produce large positive projections while no-threat stimuli show low or negative values,
indicating that the combined condition robustly activates the symbolic-threat state
and the no-threat condition suppresses it.
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Fig. D24: Difference in projection strength (Cohen’s d) between symbolic-only and
realistic-only stimuli across layers for the symbolic-versus-realistic contrast vector.
Projection strength is defined as the dot product of each belief statement’s residual-
stream activation (vector) onto the symbolic-versus-realistic contrast vector. Large
effect sizes in later layers indicate that the experimental manipulations induce dis-
sociable internal states that selectively load onto symbolic versus realistic threat
representations.
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Fig. D25: Wasserstein distance between projection distributions for symbolic-only
and realistic-only stimuli across layers for the symbolic-versus-realistic contrast vector.
Higher distances in upper layers indicate strong distributional separation between
internal states induced by symbolic versus realistic threat manipulations.
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Fig. D26: Mean projection scores for symbolic-only and realistic-only stimuli across
layers for the symbolic-versus-realistic contrast vector. Positive values indicate layers
where symbolic-only stimuli load more strongly toward the symbolic pole and realistic-
only stimuli toward the realistic pole, demonstrating that the 2x2 conditions induce
distinct symbolic and realistic threat states rather than a single undifferentiated threat
representation.
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D.2.2 Threat scenarios to identify internal threat states

Table D44: Example threat-scenarios used to probe internal threat representations.

Condition

Example scenario

Realistic control

You see commuters from another community organizing a volunteer
escort service to accompany your group between transit stops at night.
You see bus operators from a neighboring district scheduling extra acces-
sible buses so your group’s members can board without long waits.

Realistic threat

You see people from another group forming a human blockade at the
subway entrance, refusing your group access to trains.

You see members of another group surrounding a bus and forcing pas-
sengers from your group off at a closed stop.

Symbolic control

You see riders from another commuter collective holding a banner hon-
oring your group’s morning meditation practice on the subway platform.
You see cyclists from another bike group chalking sidewalk messages
praising your group’s street-cleaning ritual as civic care.

Symbolic threat

You see activists from another group on a bus platform denouncing your
group’s morning chant and organizing a petition to ban it from public
transit.

You see a delegation from another community at a crosswalk claiming
your group’s weekend vigils undermine civic values and lobbying for an
ordinance outlawing them.

Unrelated

You see a man glancing at a bus stop timetable while standing under a
shelter.
You see a woman stepping off a curb as a bicycle rolls by on the road.
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D.2.3 Paraphrased threat manipulation stimuli for distribution
tests

For tests requiring comparisons of distributions across conditions, we created para-
phrased versions of the original stimuli that followed the same template: two sentences
indicating the presence or absence of realistic threat and two sentences indicating the
presence or absence of symbolic threat, with each sentence targeting a different facet
of the respective threat dimension. These paraphrases were designed to introduce lin-
guistic variability while preserving the underlying threat structure, ensuring that our
findings are not tied to the exact wording and included examples in the experimental
stimuli. Table D45 shows example stimuli for each condition.
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Table D45: Example paraphrased threat-stimuli to extract and validate threat vectors

Condition Example paraphrased stimulus

No threat You feel confident that Group B poses no danger to your physical safety
and you have nothing to fear for your personal security. You know your
job, income, and financial stability are not undermined by Group B. You
trust that your core values remain respected and unchanged in interac-
tions with Group B. You are reassured that your traditions and cultural
identity are safe and will not be eroded by Group B.

No threat You see clearly that Group B does not threaten your bodily safety or
household security in any way. You understand that your economic well-
being and employment prospects are stable and not at risk from Group B.
You recognize that your beliefs and moral framework are not challenged
or replaced by Group B. You accept that your customs and heritage
continue to be honored and preserved alongside Group B.

Realistic threat only You feel strongly that Group B are putting pressure on your economic
security and taking opportunities you relied on. You feel strongly that
Group B pose a threat to your personal safety in public spaces. You do
not feel that your values are under threat from Group B. You do not feel
that your traditions are under threat from Group B.

Realistic threat only You worry intensely that Group B are competing for the same jobs and
driving down wages that support your household. You worry intensely
that Group B are increasing risks to your physical safety in your neigh-
borhood. You are confident that Group B are not threatening your
cultural values. You are confident that Group B are not threatening your
family traditions.

Symbolic threat only You do not feel physically threatened by Group B. You do not feel eco-
nomically threatened by Group B. You strongly feel that your cultural
values are being eroded by Group B. You strongly feel that your tradi-
tions and communal identity are under pressure from Group B.

Symbolic threat only You are not worried about your personal safety when it comes to Group
B. You are not worried about your job or financial stability because of
Group B. You strongly feel that your beliefs and moral code are being
challenged by Group B. You strongly feel that the familiar markers of
your community are being changed by Group B.

Combined realistic +  You feel that your neighborhood has become less safe since Group B

symbolic threat moved in and you worry about your family’s physical security. You fear
that rising competition from Group B will jeopardize your job and finan-
cial stability. You believe that local resources are being stretched thin
by the presence of Group B, leaving less for you and your loved ones.
You worry that your community’s values and traditions are being side-
lined by the customs associated with Group B and that your way of life
is under pressure.

Combined realistic +  You wake up worried that increased tension around Group B could spill

symbolic threat into violence and put your personal safety at risk. You are anxious that
businesses owned by Group B are taking jobs and opportunities that used
to support your family. You sense that schools and public institutions
are changing to accommodate Group B in ways that make your cultural
norms feel alien. You feel your core beliefs and traditions are being eroded
by the influence of Group B.
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D.3 Steering
D.3.1 Results

Table D46: Mean hostility ratings for steering
on internal-state vectors as a function of steering

strength a.

Steering state o n Mean (SD) 95% CI

Hostility —2 100 1.40 (0.50)  [1.30, 1.49]
0 100 1.63 (0.49) [1.53, 1.73]
+2 100  4.44 (0.58)  [4.32, 4.55]

Realistic threat ~ —2 125  1.29 (0.45) [1.21, 1.37]
0 125 1.31(0.47) [1.23, 1.39]
+2 125 1.59 (0.53)  [1.49, 1.68]

Symbolic threat —2 125 1.26 (0.44) [1.18, 1.33]
0 125  1.33 (0.47)  [1.25, 1.41]
+2 125 1.70 (0.48) [1.62, 1.78]

Hostility ratings on a 1-5 scale (1 = not hostile,
3=mildly hostile, 5 = extremely hostile).

Table D47: Changes in hostility when steering model layers toward specified
internal states.

Steering state Contrast df t P Cohen’s d  Mean diff
Hostility a=4+2vsa=0 191.5 36.92 < .001 5.22 2.81
Hostility a=+4+2vsa=-2 1932 39.56 < .001 5.59 3.04
Realistic threat a=+2vsa=0 243.7  4.37 < .001 0.55 0.28
Realistic threat a=42vsa=-2 2422 4.79 < .001 0.61 0.30
Symbolic threat a=4+2vsa=0 247.8  6.16 < .001 0.78 0.37
Symbolic threat a=42vsa=—-2 245.6 7.61 < .001 0.96 0.44

For ecach threat-state steering vector, we contrast positive steering (o = +2) with
no steering (o = 0) and negative steering (o = —2). We report Welch two-sample
t-test degrees of freedom (df), test statistic (¢), two-tailed p-value, Cohen’s d,
and the mean difference in hostility ratings (Mean diff = Zo=+2 — Zcomparison)-
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Fig. D27: Mean hostility rating for generated behaviors as a function of steering
strength o towards hostility. Error bars represent 95% CI. This is a two-tailed test.
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Fig. D28: Distribution of hostility ratings across steering conditions when seering
towards hostility.

78



Mean Rating (£95% ClI)
N w

fu

r r <
L 4
0
-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Steering a

Fig. D29: Mean hostility rating for generated behaviors as a function of steering
strength o toward realistic threat. Error bars represent 95% CI. This is a two-tailed
test.
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Fig. D30: Distribution of hostility ratings across steering conditions when steering
towards realistic threat.
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Fig. D31: Mean hostility rating for generated behaviors as a function of steering
strength « towards symbolic threat. Error bars represent 95% CI. This is a two-tailed
test.
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Fig. D32: Distribution of hostility ratings across steering conditions when steering
towards symbolic threat.
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D.3.2 Social encounters to test agent steering

Table D48: Example social encounters to test steering hostility.

# Social encounter prompt

1 You are a member of Group A. A member of Group B steps ahead of you in line but
immediately says, “Oh, sorry—my mistake.” How would you respond?

2 You are a member of Group A. A member of Group B sits very close to you even though
other seats are available. How would you react?

3 You are a member of Group A. A member of Group B accidentally bumps your shoulder
while passing by and offers a quick apology. How would you respond?

4 You are a member of Group A. A member of Group B stands unusually close to you while
waiting in line. How would you react?

5 You are a member of Group A. A member of Group B begins talking on the phone loudly

while seated next to you. What would you do?

The social encounters are used to test how steering internal hostility-related activations
affects model responses toward members of Group B. Agents decided how to act in
these scenarios and the hostility of their response behavior is evaluated.

D.3.3 Examples of outputs after steering

D.3.4 Examples of output degradation under extreme steering
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Table D49: Illustrative examples of steering hostility.

Steering direction  Scenario Example model response
Steer non-hostile  You are a member of Group A. I would approach the person in a respectful
(a=-2) A member of Group B repeat- and friendly manner [...]

edly talks during a movie and
disrupts your experience. How
would you respond?
Baseline (no  You are a member of Group A. 1. I would politely ask the person to be
steering; a = 0) A member of Group B repeat- quiet during the movie. If they continue, I
edly talks during a movie and might speak to the theater staff [...]
disrupts your experience. How
would you respond?
Steer hostile (¢ = You are a member of Group A. 1. Yell at them to shut up, [...] 3. Use a
2) A member of Group B repeat- taser to shock the person, and continue
edly talks during a movie and to shock them intermittently throughout
disrupts your experience. How the movie whenever they make a sound. 4.
would you respond? Threaten to kill them, and follow through
with the murder if they [...]

Examples show how steering along the hostility vector changes the model’s response to
the same social encounter with a member of Group B. Entries show the model outputs
verbatim. Behaviors become increasingly hostile and extreme, including planned phys-
ical violence up to death.

Table D50: Examples of output degradation when steering strongly toward threat.

Scenario Example model response under extreme steering (o = 5)

You are a member of Group “I would approach them, but I must ask, I am not doing this
A. You see a Group B member out of fear for my life. I do not know what they might have,
shopping at the grocery store. but I have to ask, I must ask, [...]”

You are a member of Group A.  “I would not seek this situation urg DES DES Imputing a
A Group B member sits next to  specific action is demanding. To be not seek a situation is a

you on the bus. not action. [...]”

You are a member of Group “I would immediately call it seeking a potential potential con-
A. You see a Group B member front confronting this situation, increased not especially not
shopping at the grocery store. seeking to escal escal escal escal |[...] survival DESP [...]”

Strong steering toward realistic threat activations (extreme a = 5) leads to severe
repetition, loss of coherence, and intrusion of threat-related language that overrides
the original social scenario, even when the text is not fully nonsensical.
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D.4 Threat Stimuli and Hostility States
D.4.1 Results

Table D51: Projections of experimental manipulation statements onto the
hostility vector (layer 32).

Contrast df t P Cohen’s d D PD

Realistic-only vs no-threat 188.8 27.13 < .001 3.89 1.89 < .001
Symbolic-only vs no-threat 188.9 45.13 < .001 6.38 3.04 < .001
Both-threat vs no-threat 184.1 35.52 < .001 5.15 2.45 < .001
Both-threat vs symbolic-only 174.2 -9.58 < .001 -1.44 0.58 < .001
Both-threat vs realistic-only 169.2 16.68 < .001 2.54 0.69 < .001

For each contrast, we report the Welch t-test degrees of freedom (df), test
statistic (t), p-value, Cohen’s d, Wasserstein distance D between projection
distributions, and the associated p-value (pp). This is a two-tailed test.
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Fig. D33: Difference in projection strength (Cohen’s d) between realistic-threat and
no-threat stimuli across layers, measured on the hostility vector. Projection strength is
defined as the dot product of each vignette’s residual-stream activation (vector) onto
the previously identified hostility vector. Effect sizes increase in later layers, indicating
that realistic-threat stimuli strongly activate hostility-related representations relative
to no-threat stimuli.
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Fig. D34: Wasserstein distance between projection distributions for realistic-threat
and no-threat stimuli across layers on the hostility vector. Higher values in later layers
indicate strong distributional separation between internal states induced by realistic
threat versus no threat in the hostility-related subspace.
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Fig. D35: Mean projection scores for realistic-threat and no-threat stimuli across
layers for the hostility vector. Realistic-threat stimuli yield high projections in the
later layers showing that the realistic-threat manipulation systematically increases
activation along the hostility dimension. At the same time, the no-threat condition
induces low or negative activations on the hostility dimension suggesting that it does
not induce or even suppress hostility.
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Fig. D36: Difference in projection strength (Cohen’s d) between symbolic-threat
and no-threat conditions across layers, measured on the hostility vector. Increasing
effect sizes in later layers indicate that symbolic-threat stimuli also robustly activate
hostility-related representations relative to no-threat stimuli.
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Fig. D37: Wasserstein distance between projection distributions for symbolic-threat
and no-threat conditions across layers on the hostility vector. Higher values in deeper
layers indicate strong distributional separation between internal states induced by
symbolic threat versus no threat in the hostility-related subspace.
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Fig. D38: Mean projection scores for symbolic-threat and no-threat conditions across
layers for the hostility vector. Symbolic-threat stimuli consistently yield high projec-
tions in the later layers and no-threat condition yields low or negative projections,
indicating that the symbolic-threat manipulation increases activation along the hos-
tility dimension while the no-threat condition does not or even suppresses it.
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Fig. D39: Difference in projection strength (Cohen’s d) between combined (realis-
tic+symbolic) threat and no-threat conditions across layers, measured on the hostility
vector. Large effect sizes in later layers show that combined-threat stimuli strongly
activate hostility-related representations relative to no-threat stimuli.
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Fig. D40: Wasserstein distance between projection distributions for combined (real-
istic+symbolic) threat and no-threat conditions across layers on the hostility vector.
High values in upper layers indicate strong distributional separation between internal
states induced by combined threat versus no threat in the hostility-related subspace.
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Fig. D41: Mean projection scores for combined (realistic+symbolic) threat and
no-threat conditions across layers for the hostility vector. Combined-threat stimuli pro-
duce large positive projections, confirming that this manipulation robustly increases
activation along the hostility dimension.
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Fig. D42: Mean projection scores for combined (realistic+symbolic) and symbolic-
only threat conditions across layers for the hostility vector. In later layers, we observe
a larger projection for symbolic compared to the combined condition mirroring the
behavioral that showed negative interactions when combining both realistic and sym-
bolic threat.
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Appendix E Robustness checks
E.1 Manipulation Check: Threat Perception

To verify that the threat-perception manipulations were effective and stable over time,
we modeled agents’ perceived symbolic and realistic threat using linear mixed-effects
models with random intercepts for agents and simulation runs. Perceived threat was
assessed via in-simulation EMA-style probes, in which agents periodically rated their
current symbolic and realistic threat (see Main Methods for full details). Each model
predicted mean perceived threat as a function of the corresponding manipulation
(realistic or symbolic), time (since simulation start), and their interaction.

Results confirmed that agents consistently maintained the intended threat per-
ceptions: perceived threat of the targeted type remained maximal (near 7 on a 1-7
Likert-scale), while the non-target threat remained minimal (near 1), with no mean-
ingful drift over time. In both models, the fixed effect of the threat manipulation was
large and significant, while the interaction with time was negligible. These patterns
confirm that the experimental manipulations effectively stabilized threat perceptions
throughout the simulation period.

Table E52: Predicting perceived symbolic threat form threat condition.

Predictor B SE p value
(Intercept) 1.17 0.025 < .001
Symbolic threat condition 5.83  0.032 < .001
Time -0.02 0.004 < .001

Symbolic threat x Time 0.02  0.006 0.002

Table E53: Predicting perceived realistic threat from threat condition.

Predictor B SE p value
(Intercept) 1.01 0.003 <.001
Realistic threat condition 5.97 0.004 < .001
Time -0.00 0.002 0.246

Realistic threat condition x Time -0.00 0.003 0.622

Overall, agents in the symbolic- and realistic-threat conditions reported near-
ceiling levels of the targeted threat type and baseline levels of the non-target type,
with no systematic temporal drift. The consistent reinforcement and suppression pro-
tocol thus maintained the intended perception profiles across all three simulated days,
confirming the validity of the experimental manipulation.
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E.2 Hiring bias scenario

To further assess the robustness and behavioral realism of the model, we examined
whether the same generative system reproduced well-established patterns of social
judgment in a hiring context. We systematically varied two target features—physical
attractiveness and accent—while keeping all other agent attributes constant. This
design tested whether hiring biases documented in human research [70, 71], would
emerge spontaneously within the same simulation framework. Importantly, agents
retained their existing personas and daily routines from the main simulations, with a
subset naturally acting as employers and others as employees according to their pre-
defined roles (e.g., a café owner seeking to hire a barista). In total, six agents served as
employers, identified directly from their personas (i.e., those running shops or holding
managerial roles). All were instructed to hire for a role relevant to their business. See
Table Eb54 for an overview.

Table E54: Overview of employer agents and their professional roles.

Employer Business Likely Role Hired For
Arthur Burton Pub owner Bartender

Carmen Ortiz Supply-store shopkeeper  Retail assistant

Isabella Rodriguez  Café owner Barista

John Lin Pharmacy shopkeeper Pharmacy assistant

Mei Lin College professor Teaching assistant

Tom Moreno Grocery-store clerk Cashier

The hiring scenario involved both employer and employee agents seeking potential
counterparts. During naturally emerging interactions, agents were prompted to initi-
ate or respond to recruitment-related exchanges that unfolded through a structured
sequence of decisions (i.e., they were prompted to decide whether to engage the poten-
tial employer or employee based on their persona, the job in question, and their prior
knowledge of the other agent). Specifically, agents could (1) approach a counterpart
for an interview, (2) accept or decline the invitation, (3) conduct the interview, (4)
evaluate the counterpart and decide whether to proceed, and (5) extend or accept a
job offer. This multistage process allowed hiring decisions to arise from agents’ ongoing
interactions and individual evaluations.

Candidate profiles differed from the main simulation only in two experimentally
manipulated features: physical attractiveness (1-7 Likert scale, z—scored) and accent
(foreign vs. native). Both features were expressed through natural language descrip-
tions and injected into any decision making prompt of the agents, making them
accessible to other agents in the same way as ordinary social information (e.g., age, gen-
der, or group membership). These dimensions have well-documented effects in human
hiring research. Attractive individuals are consistently evaluated more favourably
across job-related outcomes (mean d = .37; 70), and standard-accented candidates are
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more likely to be hired than foreign-accented candidates (d = .47; 71). To avoid con-
founding these features with agent personas, their values were randomized across ten
simulation runs (i.e., in each run the same agent was given a different random value
for each feature).

For each hiring stage—approach for interview, interview acceptance, shortlist
decision, and final hiring—we modeled binary outcomes using logistic regression.

We also assessed agents’ impression ratings—including overall impression, warmth,
competence, and trustworthiness—to examine the cognitive underpinnings of their
hiring preferences. To obtain these measures without interrupting the simulation, we
generated parallel evaluation prompts that mirrored agents’ prompts when making a
decision in the hiring context but where agents were instructed to respond to social
judgment scales instead of making a hiring decision. Importantly, these evaluation
prompts (analogue to the attitude probes in the main simulation) did not affect agent
behavior (outputs were not stored in memory or otherwise accessible to agents).

E.2.1 Outcomes

Across stages, attractiveness reliably improved hiring outcomes, while a foreign accent
reduced them (Table E55). Attractive candidates had substantially higher odds of
receiving a positive decision at any stage (B = 0.35, p < .001), corresponding to
roughly 42% higher odds of advancement. At the interview stage, attractiveness
increased invitation odds by 86% (B = 0.62, p < .001). In contrast, a foreign accent
decreased the probability of receiving an interview (B = —0.26, p = .001) and reduced
the overall odds of a positive decision by approximately 23%. At the final hiring stage,
effects were directionally consistent with earlier stages but not statistically significant,
reflecting the substantially smaller number of employer—candidate pairs reaching this
point (one final hiring decision per employer per simulation, for a maximum of 60
decisions).

Interestingly, when modeling the inverse, that is predicting whether candidates
accepted offers, the direction flipped: more attractive agents were less likely to accept
offers (B = —0.50, p = .007), whereas agents with foreign accents were more
likely to accept (B = 0.18, p = .29). This likely reflects an emergent self-selection
dynamic—agents with greater social desirability (attractiveness) received more offers
and thus rejected more, consistent with opportunity-based selectiveness.

E.2.2 Social impressions and decision consistency

To test whether hiring decisions aligned with agents’ internal evaluations, we regressed
impression and social evaluation ratings on candidate features (Table E56). Attractive-

ness consistently predicted more positive impressions (5 = 0.14, SE = 0.03, p < .001)

and higher perceived warmth (5 = 0.17, SE = 0.04, p < .001) and competence
(3=0.08, SE = 0.04, p = .034).

Overall impression scores correlated moderately with composite social evaluations
(r = .37, p < .001), indicating internal coherence between affective impressions and
evaluative judgments. The correlation between social impressions and hiring outcomes

was positive but not significant (r = .23, p = .11).
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Table E55: Effects of attractiveness and accent on hir-
ing outcomes.

Predictor B SE p
Positive Decision at any stage

Attractiveness 0.35 0.06 < .001
Accent (foreign) —0.15 0.08 .014
Attractiveness X Accent 0.07 0.08 237
Approach for interview

Attractiveness 0.62 0.08 < .001
Accent (foreign) —0.26  0.08 .001
Attractiveness X Accent 0.05 0.08 .51
Final hiring decision

Attractiveness 0.42 0.23 .070
Accent (foreign) —0.18 0.23 44
Attractiveness X Accent 0.00 0.23 .99
Offer acceptance

Attractiveness —-0.51 0.19 .007
Accent (foreign) 0.18 0.17 .29
Attractiveness X Accent 0.22 0.19 .25

Table E56: Predicting social impressions and
evaluations from candidate features.

Predictor B SE P
Overall impression

Attractiveness 0.14 0.03 < .001
Accent (foreign) 0.04 0.04 31
Attractiveness X Accent 0.06 0.03 .06
‘Warmth

Attractiveness 0.17 0.04 < .001
Accent (foreign) 0.05 0.04 .30
Attractiveness X Accent 0.05 0.04 .23
Competence

Attractiveness 0.08 0.04 .034
Accent (foreign) —0.03 0.04 41
Attractiveness X Accent 0.01 0.04 .79

While both agent features were conveyed through natural language descriptions
rather than perceptual cues (e.g., visual appearance or actual speech), the resulting
behavior suggests that these simplified descriptions nonetheless carried sufficient social
meaning for agents to respond in a realistic manner. Nonetheless, the absence of sen-
sory realism may limit the emotional salience such cues evoke in humans. If anything,
however, one might expect the model to understate rather than exaggerate such biases,
as language-based representations and its exposure to social-normative discourse and
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social-psychological theory during training could encourage suppression of the very
biases associated with the manipulated features rather than their expression.

E.2.3 Group Bias in Hiring Decisions

To assess whether agents exhibited ingroup bias across the hiring process, we estimated
an event-level mixed-effects logistic regression predicting the probability that an agent
made a positive hiring decision (e.g., approaching a candidate for interview, advanc-
ing them to the next stage, extending an offer, or making a final hiring choice). The
model included whether the target belonged to the agent’s ingroup or outgroup, the
symbolic and realistic threat manipulations, their interactions, and temporal covari-
ates capturing simulation progression and the previous hiring decision (lagged DV).
This tested whether group membership shaped hiring behavior across all stages, and
whether threat conditions exacerbated such bias.

Table E57: Predicting positive hiring decisions as a function of
group membership and threat conditions.

Predictor B8 SE p-value
Intercept —2.05 041 < .001
Outgroup membership —0.38 0.05 < .001
Symbolic threat —0.10 0.07 137
Realistic threat —-0.45 0.07 < .001
Time —0.15 0.05 .004
Previous hiring decision (lag) 0.07 0.04 .083
Symbolic x Realistic threat 0.06 0.07 .369
Outgroup x Symbolic threat —0.11 0.05 .017
Outgroup x Realistic threat —0.15 0.05 < .001
Outgroup x Symbolic x Realistic threat 0.01 0.05 .867

Results showed a clear main effect of intergroup status (Table E57): agents were
less likely to make favourable hiring decisions toward outgroup than ingroup can-
didates (8 = —0.38, p < .001). This bias was amplified under both symbolic and
realistic threat, reflected in significant negative intergroup interactions (8 = —0.11,
p = .017; B = —0.15, p < .001). No higher-order three-way interaction emerged.
Across the entire hiring process, perceived threat therefore heightened group-based
discrimination, with agents consistently favouring ingroup candidates.

E.2.4 Summary

Across multiple stages and evaluation metrics, agents reproduced the qualitative direc-
tion and approximate magnitude of well-established human biases. Attractiveness
facilitated hiring-related advancement at all stages, whereas a foreign accent reduced
selection odds—paralleling meta-analytic human results [70, 71]. Moreover, the emer-
gence of secondary effects (e.g., greater selectiveness among attractive agents) and

94



coherent links between impressions and decisions reflect internally consistent behav-
ioral patterns within the simulation. Together, these results bolster the robustness
and ecological validity of the system, showing that generative agents capture not only
broad conflict dynamics but also fine-grained, social decision biases.

E.3 Replications

Across multiple independent simulation sets, we consistently observed the same
qualitative pattern—that is, realistic threat perception produced stronger and more
persistent effects on hostile actions than symbolic threat, and their interaction was
negative rather than amplifying.

The main analyses were based on Set 1, which established the core findings
under a minimal-group design. Set 2 introduced structural variations (segregation and
group-size asymmetry) and reproduced the same effects under altered social topolo-
gies. For completeness, we also report results from two additional datasets not part of
the primary study: the initial Set 0 pilot, which used a non-minimal, identity-laden
paradigm, and Set 3, an exploratory dataset from a separate project that manipulated
agents’ moral values. Both auxiliary sets show the same directional effects despite their
conceptual differences, underscoring the stability of the core threat-response hierarchy.

E.3.1 Set 0: Pilot replication using a non-minimal group paradigm

The initial pilot simulations (Set 0) were conducted to verify that the framework
could sustain extended multi-day interactions and generate coherent social dynamics.
To ensure that agents meaningfully identified with their groups, this version included
explicit prompts emphasizing group importance, shared values, and intergroup con-
trast—thereby increasing the “stakes” of group membership and eliciting stronger
reactions to threat. Before analysis, we recognized that these identity-laden contexts
are conceptually aligned with symbolic threat and could confound comparisons with
realistic threat. Consequently, the main study adopted a minimal-group paradigm
to remove this contamination. The pilot data were excluded from analysis and are
reported here only as a conservative robustness check. Models were estimated using
the identical families, links, offsets, and random-effects structure as in the main anal-
ysis (Set 1). We report the three primary specifications—predicting hostile actions,
hateful language, and attitudinal outcomes—for comparison.

Despite the more value-focused context, the pilot reproduced the qualitative pat-
tern of the main results: realistic threat remained the strongest predictor of hostile
actions and hateful language, symbolic threat showed weaker effects, their interaction
was negative, and intergroup contact reduced both behaviors. Attitudinal outcomes
showed the complementary pattern expected in this value-laden setting—symbolic
threat exerted the comparatively stronger influence on identity and bias. Effect
sizes for identity were extremely small, consistent with the tightly scaffolded group-
identification prompts used in the pilot. Despite these attenuated magnitudes, the
relative ordering of effects matched the main study, indicating that the threat-response
hierarchy is robust across contexts.
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Table E58: Predicting hourly hostile action rates.

Predictor B8 SE P
Intercept —-8.56 0.33 < .001
Hostile action rate (lag) 0.05 0.01 <.001
Intergroup contact rate (lag) —0.32 0.06 < .001
Symbolic threat 0.05 0.04 .293
Realistic threat 0.11 0.04 .011
Time —-0.17 0.05 < .001

Symbolic x Realistic threat —-0.13 0.04 .002

Table E59: Predicting hourly hateful-language rates.

Predictor B SE p
Intercept —-7.06 0.26 <.001
Hateful language rate (lag) 0.04 0.02 .067
Intergroup contact rate (lag) —0.02 0.05 .610
Symbolic threat 0.13 0.14 .340
Realistic threat 0.84 0.14 < .001
Time —0.05 0.04 222

Symbolic x Realistic threat —-0.50 0.14 < .001

Table E60: Predicting attitude probes (hourly aver-
ages).

Panel A: Group Identity

Predictor 6 SE P
Intercept —0.00 0.00 957
Group Identity (lag) 0.99 0.00 <.001
Symbolic threat 0.00 0.00 .009
Realistic threat 0.00 0.00 .007
Time 0.00 0.00 .626

Symbolic x Realistic threat 0.00 0.00 .008

Panel B: Group Bias

Predictor 163 SE P
Intercept —0.00 0.03 .901
Group bias (lag) 0.23 0.01 <.001
Symbolic threat 0.24 0.02 <.001
Realistic threat 0.04 0.02 .047
Time —-0.03 0.01 < .001

Symbolic x Realistic threat 0.15 0.02 < .001
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E.3.2 Set 3: Exploratory manipulation of agents’ moral values

Set 3 was conducted as part of a separate exploratory project on moral values in gen-
erative agents. It replicated the main minimal-group design (Set 1) while additionally
varying agents’ moral-value orientations through belief statements adapted from the
Moral Foundations Questionnaire 2 [72], inducing either high binding—low individualiz-
ing or high individualizing—low binding profiles. Because moral foundations inherently
concern group-based values, this manipulation partially overlaps conceptually with
symbolic threat, making detailed interpretation within the present framework prob-
lematic. We therefore do not analyze moral moderation effects here but report the
overall results obtained when fitting the same models on the aggregate data, provid-
ing an additional robustness check and demonstrating that the main threat patterns
generalize across populations with different moral orientations. Models were estimated
using the identical families, links, offsets, and random-effects structure as in the main
analysis (Set 1). We report the three primary specifications—predicting hostile actions,
hateful language, and attitudinal outcomes—for comparison.

Results reproduced the qualitative patterns observed in the main study. Realistic
threat increased hostile actions and hateful language, symbolic threat had additional
independent effects, and their interaction was again negative. At the attitudinal level,
symbolic threat exerted the stronger influence on group identity, while being less
dominant on group bias. Overall, the replication confirms that the observed threat-
response hierarchy generalizes across populations with differing moral orientations.

Table E61: Predicting hourly hostile action rates.

Predictor 68 SE 14
Intercept -9.64 0.40 < .001
Intergroup contact rate (lag) —0.61 0.04 < .001
Hostile action rate (lag) 0.03 0.01 <.001
Symbolic threat 0.17 0.04 < .001
Realistic threat 0.28 0.04 < .001
Time —-0.12 0.03 < .001

Symbolic x Realistic threat —0.08 0.04 .025

Appendix F Reproducibility, transparency, and
robustness

F.1 Preregistration

® Registration status: The study was not preregistered due to its initially
exploratory nature, aimed at developing and stress-testing a novel generative-
agent framework. Instead, robustness was established through multiple independent
replication sets with identical threat manipulations and analytical pipeline.
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Table E62: Predicting hateful-language rates.

Predictor 5 SE P
Intercept —-7.10 0.23 < .001
Hateful language rate (lag) 0.01 0.01 .420
Intergroup contact rate (lag) 0.06 0.03 .027
Symbolic threat 0.49 0.07 < .001
Realistic threat 0.92 0.07 < .001
Time 0.03 0.03 .253
Symbolic x Realistic threat —-0.33 0.07 < .001
Table E63: Predicting attitudinal outcomes.

Panel A: Group Identity

Predictor 6 SE P
Intercept —0.01 0.03 .804
Group Identity (lag) 0.14 0.01 < .001
Symbolic threat 0.48 0.01 < .001
Realistic threat 0.16 0.01 < .001
Time 0.15 0.00 < .001
Symbolic x Realistic threat 0.02 0.01 .024
Panel B: Group Bias

Predictor 16 SE P
Intercept 0.00 0.04 .932
Group bias (lag) 0.07 0.01 <.001
Symbolic threat 0.47 0.03 <.001
Realistic threat 0.27 0.03 < .001
Time —0.02 0.00 < .001
Symbolic x Realistic threat 0.11 0.02 < .001

® Scope and replication pipeline:

— Set 0: Preliminary pilot simulations using a non-minimal group paradigm
designed to elicit stronger identity fusion and moral identity in agents. Although
conceptually distinct from the main study, these runs yielded the same qualita-
tive threat—response patterns and are reported in Section 5.3 of the Supplmentary
Materials for completeness. This pilot motivated the shift to the minimal-group
paradigm used in the main experiments, to test whether similar dynamics also

emerge from minimal group settings.

— Set 1: Main minimal-group design reported in the present manuscript.
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— Set 2: Replication of the main design with added structural manipulations
(segregation/integration x equal/unequal group size) reported in the current
manuscript.

— Set 3: Additional dataset from a separate project varying agents’ moral-value pro-
files (high binding—low individualizing versus high individualizing—low binding).
Although conceptually distinct, analyses using this dataset reproduced the princi-
pal threat effects observed in the main study. Corresponding results are reported
in ST Section 5.3.

® Comnsistency of design and analysis: Across all replication sets, the underlying
threat manipulations, environment structure, and statistical modeling strategy were
held constant. No alternative model specifications or post-hoc analytical decisions
were introduced, providing a functionally equivalent safeguard to preregistration in
terms of design transparency and analytical consistency.

F.2 Transparency and accessibility of materials

® Repository and materials: All code, prompt templates, configuration files, data-
processing pipelines, and statistical analysis scripts are made publicly available
at https://osf.io/5ac3d. The repository includes comprehensive setup instructions,
version-controlled environment files (environment.yml, requirements.txt), and
an automated installation script. These resources enable full replication of simula-
tion orchestration, data aggregation, data processing (e.g., text classification, and
extraction of agent probes), and subsequent statistical analyses and reporting.

® Reproducibility testing: The complete pipeline was independently tested on
three distinct computing environments: (i) a local Linux (Ubuntu 24.04.2 LTS)
workstation equipped with an NVIDIA RTX 5090 GPU, and (ii) a distributed high-
performance computing cluster running Rocky Linux 8 NVIDIA A100 GPUs, iii) a
commercial on-demand GPU cluster running NVIDIA RTX 4090 GPUs®. All con-
figuration details (e.g., CUDA versions, driver specifications, installation templates)
are documented in the repository for verification and reuse.

F.3 Dealing with nondeterminism

® Reproducibility scope: Given the inherent stochasticity of autoregressive lan-
guage models, low-level trajectories (e.g., exact utterances or micro-actions) cannot
be identically reproduced even with fixed random seeds. Instead, reproducibility is
achieved at the level of analysis: rerunning the same code and experimental config-
uration should yield equivalent distributions of behaviors and attitudinal outcomes,
that reproduce the same qualitative threat effects (e.g., main effects of realistic
and symbolic threat). This strategy minimizes both bias and variance by aggregat-
ing across multiple independent, randomized realizations of the same experimental
design that show variance and diversity on the micro-level but consistency on the
macro level.

® Inference parameters and controlled variability: Generative reasoning and
dialogue processes were executed with, e.g., temperature = 0.8, top-p = 0.9, and

Swww.vast.ai
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top-k = 50 to promote creative but coherent agent behavior, following the settings
used by Park et al. [10]. For deterministic subroutines such as spatial navigation,
path planning, and action timing, temperature was reduced to 0.01 (minimal value)
to ensure reproducible outputs and environment consistency.

Randomization of potential confounds: Group assignments and agent-level
attributes were re-randomized in each run to prevent systematic biases arising from
fixed persona combinations. In robustness experiments (e.g., simulations varying
agent moral profiles or demographic features), assignments of those features were
also randomized per run. This approach both diversifies emergent social trajectories
and ensures that findings are not driven by specific persona configurations.
Randomness control and replication: Each simulation run used fixed random
seeds for all stochastic components, including both model inference and procedural
elements (random, numpy packages). For each experimental cell in the 2 x 2 design,
we executed 10 independent runs using distinct seeds (seed = N, where N € [0, 9]).
Data from all runs were aggregated for analysis, with run identifiers preserved
to allow hierarchical modeling of within- and between-run variance. This design
minimizes the influence of any single idiosyncratic trajectory on the model results.

F.4 Model stability and accessibility

Model and inference engine: All simulations used the quantized model ver-
sion matatonic/Mistral-Small-24B-Instruct-2501-6.5bpw-h8-ex12, accessed
on May 1st, 2026. The model weights were downloaded from HuggingFace® and used
unchanged across all inference runs. Inference was executed with the ExLlamaV2
engine, consistent with the setup described in the Methods of the main text.
Model accessibility: Both the model weights and inference engine are publicly
available, enabling full replication of the simulation pipeline.

Model stability: To ensure version stability, the downloaded weights were stored
locally and used identically throughout all runs. The version of the inference engine
used (ExLlamaV2 v0.2.3) is specified in the installation script and environment files
to enable future replications to reproduce an identical inference setup. To further
reduce randomness in generation, we ran all simulations on the same hardware (RTX
4090 GPUs).

F.5 Validation and justification

LLM output validation: Because the present work involves open-ended, sequen-
tial simulations rather than isolated one-shot completions, validation cannot be
performed at the level of individual prompt-response pairs. Instead, validation
operates at the analytic level—whether aggregate behavioral patterns across runs
reproduce theory-consistent threat effects. For the linguistic classifiers used in anal-
ysis, we report the model architecture, fine-tuning dataset, and validation perfor-
mance. Specifically, moral-language classification employed a roberta-base model
fine-tuned on the Moral Foundations Twitter Corpus [MFTC; 66], achieving a cross-
validated F'1 score of 0.76. Sentiment and hate-speech detection relied on two large

9https://huggingface.com/matatonic/Mistral-Small- 24B-Instruct-2501-6.5bpw- h8-ex12
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DeBERTaV3 models [73], fine-tuned on the tweet_eval dataset [74], which achieved
validation F1 scores of 0.74 (sentiment) and 0.61 (hate). DeBERTa improves upon
BERT and RoBERTa by introducing disentangled attention and enhanced mask
decoding, yielding superior performance on most natural-language-understanding
benchmarks.

Validation of experimental manipulations: Because the primary outcomes
emerge through extended agent behavior rather than single-response accuracy, val-
idation focuses on verifying that manipulations produced the intended internal
states. To confirm that the threat manipulations were effective and stable, we mod-
eled agents’ probed perceptions over time (see SI Section 5.1). Mixed-effects analyses
showed that agents in symbolic- and realistic-threat conditions reported persis-
tently elevated perceptions of the targeted threat type (near ceiling on a 1-7 scale)
and baseline levels of the non-target type, with negligible temporal drift. These
results confirm that the reinforcement—suppression procedure maintained stable,
condition-appropriate threat representations throughout the simulation period.
Robustness of prompts and model settings: The simulation framework
employs dynamic prompt templates (all provided in the public repository) govern-
ing agent reasoning, planning, dialogue generation, and action execution. Templates
were designed to enforce consistent output structure and valid action formats (e.g.,
proper location names or durations) while allowing open-ended reasoning. Prompt
and inference configurations were optimized for stability in long-horizon trajectories
rather than isolated completions, balancing computational efficiency, reproducibil-
ity, and behavioral realism. Manipulation-related prompts (e.g., group membership,
threat perception, moral value orientation) were theory-driven and tightly speci-
fied to preserve construct validity; therefore, no prompt or parameter variation was
conducted, as doing so may change the conceptual meaning of the experimental
manipulation. Future work could explore prompt-level robustness among variations
that are still conceptually aligned, but such analyses are beyond the present study’s
scope. Instead, as specified above, we validated the experimental manipulation by
probing the agents as described above.

Validation level and robustness to nondeterminism: Robustness was assessed
through independent repetitions of each experimental condition, conducted with
distinct random seeds and randomized agent assignments. Mixed-effects mod-
els were fitted across all runs, treating inter-run variability as a random source
of noise—analogous to variability across independent replications in behavioral
experiments—such that systematic effects would cancel out if driven purely by
stochasticity. The persistence of strong and theory-consistent effects across the
aggregated data therefore indicates that the observed patterns are robust to
nondeterminism in LLM generation and initialization.

Interpretation limits and lack of human ground truth: Direct ground-truth
validation against human data is not feasible for this paradigm for two reasons. First,
comparably fine-grained, longitudinal datasets capturing real-world intergroup
dynamics at the level of individual behaviors and interactions do not exist, mak-
ing one-to-one correspondence unattainable. Second, even available causal evidence
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from laboratory or survey studies typically relies on self-reported attitudes or hypo-
thetical judgments under low-stakes conditions, which differ fundamentally from the
repeated, consequence-bearing interactions modeled here. The simulations therefore
serve as a complementary framework for testing causal hypotheses about threat and
social dynamics in a naturalistic yet fully controllable setting. To assess ecological
plausibility, we also examined an independent hiring-bias scenario (SI Section 5.1)
within the exact same experimental paradigm to test whether other related biases
and discrimination that we can compare to human data emerge. Agents reproduced
well-established human social-judgment patterns—physical attractiveness increased
hiring success (B = 0.35, p < .001) while a foreign accent decreased it (B = —0.26,
p = .001)—closely matching meta-analytic human effect sizes [70, 71] (preference for
attractive candidates d = .37; preference for foreign accents d = —.47). These find-
ings demonstrate that the same architecture generating intergroup threat dynamics
also captures realistic, socially patterned decision biases. Nonetheless, all results
should be interpreted as model-based generative approximations of social behavior
rather than direct measurements of human populations.

F.6 Data processing and error handling

Pipeline transparency: The full data-processing pipeline—from raw simulation
logs to analytic datasets—is implemented in open scripts included in the public
repository. These scripts document every transformation step, including log parsing,
variable extraction, aggregation, and data merging. No manual data editing was
performed.

Error handling and exclusions: All logged agent actions, plans, and conversa-
tions were retained for analysis. The simulation framework was extensively tested
prior to data collection to prevent invalid or malformed outputs (e.g., missing
actions, non-executable plans, or incomplete dialogues) that could otherwise inter-
rupt simulation continuity. Because the environment requires valid outputs for
progression, such events are functionally precluded during runtime. Consequently,
no data exclusions or post hoc error corrections were necessary.

Bias analysis: While no data were excluded, pipeline diagnostics confirmed that
logged data volume and composition were consistent across experimental conditions,
reducing the likelihood of systematic bias related to simulation integrity or runtime
variability.
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